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Introduction
Multiple sclerosis (MS) disease course is highly vari-
able among individuals and highly unpredictable, 
especially in terms of future risk of disability.1 Thus, 
there is a strong need for reliable biomarkers in this 
regard. Retinal neurodegenerative signs occur in the 
majority of MS patients, more frequently and more 
pronounced in patients with progressive disease 
course, longer disease duration and with marked 

disability and brain atrophy.2 Optical coherence 
tomography (OCT) is a non-invasive, inexpensive, 
well-tolerated high-resolution imaging technique 
used for the assessment of retinal structures. 
Retrograde degeneration of optic nerve axons is cap-
tured by OCT and reflected by thinning of the peri-
papillary retinal nerve fibre layer (pRNFL), which 
consists of unmyelinated axons only.2 pRNFL thick-
ness is associated with physical disability and brain 
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atrophy in MS.3–5 However, there are only cross-sec-
tional studies showing an association between pRNFL 
thickness and cognitive impairment.6,7 Recently, 
pRNFL thickness ≤88 µm was reported to indicate a 
twofold increased risk of physical disability worsen-
ing within subsequent years.8 In this study, we aimed 
to assess the usefulness of cross-sectional monitoring 
of pRNFL in prediction of not only physical, but also 
cognitive disability progression in relapsing-remitting 
MS (RRMS) using this cut-off point. In addition, we 
also investigated the value of longitudinal pRNFL 
monitoring in this regard.

Methods
We prospectively included 151 consecutive RRMS 
patients aged between 18 and 65 years from the MS 
Clinic of the Clinical Department of Neurology at the 
Medical University Innsbruck. RRMS was diagnosed 
according to the 2010 McDonald criteria.9

Retinal atrophy is more pronounced in eyes with 
acute optic neuritis (ON) than in unaffected eyes.10,11 
Therefore, we only included patients with at least one 
eye without a clinical history of previous ON and 
excluded eyes with previous clinical history of ON 
from the analysis to avoid a confounding effect of 
ON.8 Other exclusion criteria were previous diagno-
ses of ophthalmological (e.g. severe hyperopia/myo-
pia), neurological, or drug-related causes of vision 
loss or retinal damage not attributable to MS.5,12

pRNFL thickness was measured by two experienced 
technicians at baseline and after 3 years by use of the 
same spectral-domain OCT with Spectralis (Heidelberg 
Engineering, Heidelberg, Germany; software 
Heidelberg eye explorer software version 5.4.8.0) 
without pupil dilatation in a dark room on both eyes of 
each patient. For evaluation of pRNFL, a custom 3.4-
mm ring scan (12°) centred on the optic nerve head was 
used (automatic real-time ART 100). Image processing 
was conducted semi-automated with manual correction 
of obvious errors. All examinations were checked for 
sufficient quality using OSCAR-IB criteria.13

For patients without a history of ON, pRNFL thick-
ness was calculated as the mean of the values for both 
eyes. For patients with a history of unilateral ON, 
only the values of eyes without ON were used in the 
analyses.8 Patients suffering ON in an eye initially 
included in the analysis were excluded from the lon-
gitudinal part of the study.

Clinical study visits were conducted at baseline and 
after 1 (Y1), 2 (Y2) and 3 years (Y3) of follow-up. A 

structured questionnaire regarding demographic 
data, neurological and treatment history including 
disease-modifying therapy (DMT) and occurrence 
and date of relapses was obtained from each partici-
pant at every visit. A relapse was defined as patient-
reported symptoms or objectively observed 
neurological signs typical of an acute central nervous 
system (CNS) inflammatory demyelinating event 
with duration of at least 24 hours in the absence of 
fever or infection and separated from the last relapse 
by at least 30 days.14 Relapse activity was defined as 
occurrence of one or more confirmed relapses during 
the observation period.

Expanded Disability Status Scale (EDSS) was 
obtained at every visit.15 If a relapse had occurred 
within 6 months before the scheduled visit, EDSS was 
only considered when confirmed after 6 months. 
EDSS progression was defined as a confirmed EDSS 
increase of ≥1.0 point in patients with a baseline score 
of ≤5.5, or an increase of ≥0.5 points in patients with 
a baseline score of >5.5 sustained for at least 
12 months as compared to baseline.

For assessment of cognitive function, we chose the 
Symbol Digit Modalities Test (SDMT) as a well-
established, easy obtainable and sensitive screening 
test for cognitive dysfunction in MS, particularly suit-
able for longitudinal assessment of MS-related cogni-
tive changes as it does not have significant practice 
effects.16–18 The SDMT was performed at each visit. 
Based on previous observations of longitudinal 
changes in the SDMT score in MS patients and in 
concordance with the suggestion of the Multiple 
Sclerosis Outcome Assessments Consortium 
(MSOAC), we defined cognitive decline as a loss of 
≥4 points or a ≥10% decrease in SDMT score as com-
pared to baseline. Any decrease was only considered 
when the SDMT deterioration was sustained for at 
least 12 months.18

The investigators performing the OCT were blinded 
to clinical parameters and the investigators assessing 
relapses, EDSS and SDMT were blinded to OCT 
results.

The study was approved by the ethics committee of 
the Medical University Innsbruck (ethical approval 
number: AM3743-281/4.3) and all participants gave 
written informed consent before inclusion.

Statistics
Statistical analysis was performed using SPSS 24.0 
(SPSS Inc, Chicago, IL, USA). Categorical variables 
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were expressed in frequencies and percentages, con-
tinuous variables as mean and standard deviation or 
95% confidence interval (CI). Continuous variables 
were tested for normal distribution by the 
Kolmogorov–Smirnov test. Univariate comparisons 
were done by chi-square test, Mann–Whitney U-test 
or independent t-test (with Welch’s correction in case 
of unequal standard deviations between the groups) 
as appropriate.

We used Cox proportional hazard models correcting 
for age, disease duration and EDSS at baseline to test 
the value of pRNFL thickness ≤88 µm for prediction 
of EDSS progression.8 We tested all variables for nor-
mal distribution by Kolmogorov–Smirnov test and for 
collinearity by variance inflation factor (VIF) and 
excluded all variables from the regression analysis if 
the VIF was >2.0 corresponding to an R2 of 0.60. As 
our cohort was not large enough to generate and vali-
date different cut-off values, we used the previously 
reported cut-off value of ≤88 µm which represents the 
lowest tertile of normative values of Spectralis. We 
used the same cut-off value in a Cox proportional haz-
ard model correcting for age, disease duration and 
SDMT at baseline for prediction of cognitive decline.

We also calculated the difference in pRNFL thickness 
from baseline to year 3 (labelled as pRNFL delta). We 
performed univariate correlation analyses between 
pRNFL delta and age, sex, disease duration, relapse 
activity, EDSS progression, cognitive decline and 
DMT (no DMT vs DMT exposure during the whole 
observation period). We also performed pRNFL delta 
comparisons regarding different DMTs (no DMT vs 
one single DMT during observation period vs DMT 
switch during observation period). Subsequently, we 
included all variables, which showed statistically sig-
nificant correlations to pRNFL delta on a univariate 
basis, in a multivariate linear regression model. We 
could only include DMT versus no DMT in the multi-
variate model since inclusion of more grades of free-
dom would have resulted in overmatching 
compromising the validity of our model.

Results
Demographics and characteristics of the study cohort 
are given in Table 1. In all, 141 of 151 (93.4%) 
recruited patients completed the study. In all, 10 
patients were lost to follow-up (8 before the first fol-
low-up visit and 2 before the second follow-up) and 
therefore had to be censored for statistical analysis.

Overall, EDSS progression occurred in 46 (32.6%) 
and cognitive decline in 36 (25.5%) patients. In total, 

46 (32.6%) patients had a pRNFL thickness equal to 
or smaller than 88 µm at baseline. This group was sig-
nificantly older (38.6 vs 33.5 years; p < 0.001), had a 
longer disease duration (6.5 vs 4.4 years; p < 0.001), a 
higher median EDSS (2.5 vs 1.0; p < 0.001) and a 
lower SDMT (49.3 vs 56.6; p < 0.001) at baseline. 
There were no significant group differences regarding 
sex or DMT status at baseline. Using a multivariate 
Cox proportional hazard model (correcting for age, 
disease duration and EDSS at baseline), a pRNFL 
thickness ≤88 µm was associated with a threefold 
increased hazard ratio (HR: 2.96; 95% CI: 1.56–5.65; 
p < 0.001) of EDSS progression within the subsequent 
3 years (Figure 1). Using a similar model (correcting 
for age, disease duration and SDMT at baseline), a 
pRNFL thickness ≤88 µm was associated with a 2.7-
fold increased risk (HR: 2.69; 95% CI: 1.31–5.53; 
p = 0.0047) of cognitive decline within the subsequent 
3 years (Figure 2). In both models, higher age at base-
line (per 5 years: HR for EDSS progression 1.34; 95% 
CI: 1.12–1.57; p = 0.023; HR for cognitive decline 
1.23; 95% CI: 1.02–1.43; p = 0.042), longer disease 
duration (per 5 years: HR for EDSS progression 1.67; 
95% CI: 1.54–1.81; p = 0.003; HR for cognitive 
decline 1.59; 95% CI: 1.43–1.75; p = 0.010) and 
higher EDSS at baseline (per 1 EDSS point: HR for 
EDSS progression 1.73; 95% CI: 1.61–1.86; p = 0.001; 
HR for cognitive decline 1.62; 95% CI: 1.45–1.79; 
p = 0.006) were associated with increased risk of 
EDSS progression and cognitive decline within the 
subsequent 3 years. Overall, 78.3% of patients with 
EDSS progression and 71.1% of patients with cogni-
tive decline were correctly classified by pRNFL 
thickness ≤88 µm.

Overall, mean pRNFL delta was −5.3 µm (SD, 4.2) 
within 3 years. pRNFL decrease was significantly 
higher in patients with EDSS progression and cogni-
tive decline during the observation period (Figure 
3(a) and (b)). There was also a stronger decrease in 
pRNFL in patients with relapse activity although this 
did not reach statistical significance (Figure 3(c)). 
pRNFL decrease was significantly lower in patients 
receiving only natalizumab or only alemtuzumab 
compared to patients receiving either no DMT, or 
only interferon beta, glatiramer acetate, dimethyl 
fumarate, fingolimod or patients who switched DMTs 
during the observation period (Figure 3(d)). Decrease 
in pRNFL was also stronger in patients with a pRNFL 
≤88 µm at baseline as compared to patients with a 
pRNFL > 88 µm at baseline (−7.5 vs −4.2; p < 0.001).

A multivariate linear regression model regarding 
pRNFL delta showed that EDSS progression and cog-
nitive decline had the strongest negative impact on 
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pRNFL decrease during the observation period. 
Higher age and longer disease duration were also sig-
nificantly associated with stronger decrease in pRNFL 
although to a lesser extent. Exposure to DMT did 
have a small but significant positive impact on pRNFL 
delta (Table 2).

Discussion
In this 3-year, prospective longitudinal study on 151 
RRMS patients, we aimed to assess the predictive 

value of cross-sectional (using a previously reported 
cut-off value of pRNFL ≤88 µm) and longitudinal 
monitoring (using decrease in pRNFL over 3 years) of 
pRNFL thickness for physical and cognitive disability 
progression.

There are two key findings resulting from our study: 
(1) a pRNFL ≤88 µm at baseline is associated with a 
threefold increased risk of EDSS progression and a 
2.7-fold increased risk of cognitive decline within the 
subsequent 3 years and (2) the decrease in pRNFL 

Table 1. Demographics and clinical characteristics.

n = 151 n = 143 n = 141 n = 141

Femalesa 119 (78.8)  

Ageb (years) 35.1 (9.4)  

MS disease durationb (years) 5.8 (2.7)  

Number of DMTs prior to baselinec 1 (0–3)  

Relapsea 53 (35.1)  

Previous optic neuritisa 30 (19.9)  

 Baseline Year 1 Year 2 Year 3

EDSSc 1.5 (0–6.5) 2.0 (0–7) 2.0 (0–7) 2.5 (0–8.5)

SDMTb 54.0 (10.1) 53.3 (9.8) 52.1 (10.4) 50.9 (11.3)

pRNFL thicknessb 91.7 (13.2) 86.4 (12.9)

Current DMTa

 Interferon beta 42 (27.8) 40 (27.9) 30 (21.3) 26 (18.4)

 Glatiramer acetate 20 (13.2) 19 (13.5) 11 (7.8) 8 (5.7)

 Dimethyl fumarate 1 (0.7) 8 (5.7) 18 (12.8) 16 (11.3)

 Fingolimod 10 (6.6) 13 (9.2) 16 (11.3) 22 (15.6)

 Natalizumab 14 (9.2) 19 (13.3) 23 (16.3) 29 (20.6)

 Alemtuzumab 2 (1.4) 2 (1.4) 2 (1.4) 2 (1.4)
 All DMTs 90 (59.6) 99 (70.2) 100 (70.9) 103 (73.0)

DMT: disease-modifying therapy; EDSS: Expanded Disability Status Scale; MS: multiple sclerosis; SDMT: Symbol Digit Modalities 
Test; pRNFL: peripapillary nerve fibre layer.
aNumber (percentage).
bMean and standard deviation.
cMedian and range.

Figure 1. Risk of EDSS progression according to pRNFL 
at baseline.
pRNFL: peripapillary retinal nerve fibre layer; HR: hazard ratio 
(95% confidence interval).

Figure 2. Risk of cognitive decline according to pRNFL 
at baseline.
pRNFL: peripapillary retinal nerve fibre layer; HR: hazard ratio 
(95% confidence interval).
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thickness over 3 years is strongly negatively impacted 
by EDSS progression and cognitive decline and to a 
lesser degree by higher age and disease duration, 
while it is positively impacted by DMT exposure.

These results are a further step towards validation of 
pRNFL measurement as a biomarker to monitor 
physical and cognitive disability progression in 
RRMS.

The association of pRNFL thinning and neurode-
generative changes such as axonal loss with physi-
cal and cognitive disability and brain atrophy is 
well established in MS.3–6,12,19 However, it is unclear 
whether these changes occur slowly progressive or 

relapsing (meaning an acute to subacute loss of 
axons followed by stable phases without loss of 
axons) and whether they are attributable to retro-
grade axonal degeneration or microscopic optic 
nerve inflammation, trans-synaptic degeneration, 
primary retinal neurodegeneration or systemic 
effects of inflammation.3–6,12,19 The currently pre-
vailing concept of clinically apparent disease pro-
gression suggests a threshold of CNS damage after 
which further damage translates to increasing clini-
cal disability.8,20 This threshold might transfer to a 
level of axonal damage which is reflected by pRNFL 
thickness. We found that EDSS progression and 
cognitive decline did have a significant impact on 
pRNFL thinning – while relapse activity did not 

Figure 3. Univariate differences in pRNFL delta according to EDSS progression (Panel a), cognitive decline (b), relapse 
activity (c) and different disease-modifying agents (d).
pRNFL: peripapillary retinal nerve fibre layer; DMT: disease-modifying therapy; IFN-beta: interferon beta preparations; GLAT: 
glatiramer acetate; DMF: dimethyl fumarate; FTY: fingolimod; NATZ: natalizumab; ATZ: alemtuzumab; switch: change of DMT during 
observation period.
pRNFL delta values are shown as means with standard deviation. *p value < 0.05 compared to no DMT, IFN-beta, GLAT, DMF, FTY, 
NATZ, ATZ and switch after correction for multiple comparison (Bonferroni).

Table 2. Linear regression model regarding pRNFL delta.

Mean pRNFL change 95% confidence interval p value

Age at baseline (per year) −0.7 −1.3 to −0.1 0.039

Disease duration (per year) −0.5 −1.2 to 0.2 0.217

Male sex −0.2 −1.3 to 0.8 0.694

EDSS progression −5.6 −6.7 to −4.4 <0.001

Relapse activity −1.1 −2.0 to 0.1 0.223

Cognitive decline −2.4 −3.6 to −1.2 0.034
DMT exposure 0.2 0.1 to 0.5 0.026

DMT: disease-modifying therapy; EDSS: Expanded Disability Status Scale; pRNFL: peripapillary retinal nerve fibre layer.
R2: 0.735; p < 0.001.
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– which lends support to the notion that pRNFL 
thinning is more a steadily progressive rather than a 
relapsing process.

Mean rates of pRNFL thinning are mostly reported to 
range from 1 to 2 µm/year with faster thinning occur-
ring in active MS and it was suggested that repeated 
pRNFL measurements should be performed at inter-
vals of at least 2–3 years to avoid bias due to SD-OCT 
resolution issues.4,10,21 There is only one report which 
did not find pRNFL thinning over 2 years, but these 
results are limited by a low sample size and incon-
sistent follow-up intervals.22 We found a mean 
pRNFL thickness decrease of 5.3 µm over 3 years 
translating to 1.8 µm/year, strongly exceeding the 
mean rate of age-related average RNFL thinning in 
healthy individuals which ranges from 0.52 to 
0.54 µm per year.23,24

Retinal layer thinning has been reported to be slowed 
in patients treated with natalizumab compared to 
patients with interferon beta or glatiramer acetate 
indicating the potential utility of OCT measures for 
monitoring neurodegenerative (by potentially less 
inflammatory triggers) treatment effects in RRMS.25 
We found slower rates of pRNFL thinning in patients 
treated with natalizumab or alemtuzumab as com-
pared to patients receiving any other DMT or no 
DMT, which clearly supports this concept. Still, this 
does raise the paramount question whether most of 
DMTs – especially those classified as basic immu-
nomodulatory drugs – are truly able to impact disease 
progression over time. Still, our study was neither 
designed nor powered to investigate the impact of dif-
ferent DMTs on pRNFL thinning in a multivariate 
model but urgently warranting further prospective 
studies on this matter with larger sample sizes.

Magnetic resonance imaging (MRI)-based measure-
ment of brain volume is the most commonly used 
method for assessment of neurodegeneration in MS. 
Since our study did not include MRI measures, we 
were unable to investigate any associations to MRI 
measures such as brain atrophy. However, OCT has 
significant advantages as it is non-invasive, relatively 
inexpensive, easy to perform and accessible, fast, and 
produces reliable quantitative measures.26 OCT meas-
ures are also easier to standardize with no confound-
ing inter-rater variability enabling intra-individual 
longitudinal monitoring. In addition, in the absence of 
acute ON, pRNFL thickness is not directly affected by 
inflammation as compared to MRI – probably because 
MRI is reflecting both unmyelinated and myelinated 
axons – which makes it a useful biomarker to comple-
ment MRI in routine monitoring of MS. In this light, 

we suggest that pRNFL thickness should be included 
in the concept of ‘no evidence of disease activity’ 
(NEDA).

Our study has several limitations. We did not include 
ganglion cell layer (GCL) or ganglion cell layer and 
inner plexiform layer (GCIPL) thickness which was 
also reported to reflect the global MS disease pro-
cess.4,27,28 We concentrated on pRNFL since it is the 
most widely used OCT measure in MS making it the 
most likely candidate for usage as a biomarker in MS. 
However, GCL or GCIPL might be of additional value 
in the future warranting further studies in this context. 
In case of unilateral ON, only the pRNFL thickness of 
the eye without ON was used in the analyses. 
Occurrence of previous unilateral ON might have a 
confounding effect on pRNFL of the unaffected eye 
by retrograde axonal degeneration through the con-
nection of both optic nerves via the optic chiasm.10 
Moreover, our results cannot be applied to patients 
with progressive courses of MS or patients who had 
bilateral ON or ON affecting both eyes at different 
time since they were excluded from our study. While 
the SDMT is a sensitive screening test for cognitive 
dysfunction in MS recommended for longitudinal 
assessment of MS-related cognitive changes, it does 
not provide a complete evaluation of cognitive status 
of MS patients.

In conclusion, both cross-sectional and longitudinal 
monitoring of pRNFL is a useful biomarker for pre-
diction of physical and cognitive disability progres-
sion in patients with RRMS. Based on the existing 
body of evidence, pRNFL should be included in 
routine disease monitoring in everyday clinical 
practice.
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