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The hippocampus is a phylogenetically ancient structure of the 
mammalian cortex that has been shown to play an important 
role in memory and spatial navigation. Theoretical attempts to 

reconcile these functions have led some groups to suggest a primacy 
for spatial coding in the hippocampus1–3; others have suggested that 
the fundamental role of the hippocampus is memory, with physi-
cal space as just one variable that must be conjunctively encoded in 
episodic memory4,5. Direct comparisons of spatial and nonspatial 
representations in hippocampal neurons are challenging because 
of methodological gaps between model species1,5–7. Furthermore, 
extrapolating hippocampal coding schemes across species is com-
plicated by the diverse organizations of sensory systems and resul-
tant reorganization of sensory inputs to the hippocampus8,9.

A wealth of experimental and incidental lesion literature has 
implicated the hippocampus in associative memory across species10. 
In humans and nonhuman primates some hippocampal neurons 
have been shown to differentially respond to unfamiliar and familiar 
objects at certain locations11–13; responses during initial presentation 
are predictive of subsequent recognition14. Furthermore, changes in 
the selectivity of hippocampal neurons correlate with performance 
changes15 and trial outcome during associative memory tasks16,17.

In rodents, the discovery of place cells that fire action poten-
tials when animals occupy a specific location in an environment18 
implicated the hippocampus in spatial navigation19. In primates, 
analogous neurons have been reported, although these may be 
modulated in ways that are species-specific. Several studies that 
account for gaze position suggest that spatially specific firing in hip-
pocampal neurons is dependent on spatial view in monkeys20 and 

humans21,22. Hippocampal place fields are sensitive to the configura-
tion of extramaze cues in monkeys23, while the activity of some neu-
rons is invariant to changes in the identity of distal environmental 
cues and seems to encode their position relative to goal locations24. 
Primate hippocampal activity may also be dependent on the previ-
ous sequence of events before entering the place field25. Individual 
neurons in the primate hippocampus may fire in a spatially specific 
manner but their activity is qualitatively distinct from place cells 
observed in rodents; primate hippocampal neurons with spatial fir-
ing seem to be modulated by view, environmental, cognitive and 
behavioral factors9.

An emergent view from this body of research is that some indi-
vidual neurons in the primate hippocampus exhibit selectivity 
for elements of associative memory and some neurons fire in a 
spatially specific manner. These activity patterns could be carried 
out by separable populations of neurons, or a single population of 
neurons may carry spatial and nonspatial information. The extent 
to which this information may mix, and how sensory and mne-
monic components of cognitive tasks can drive spatial specificity, 
have not been extensively investigated in primates. To examine 
these issues, one would need to first examine the activity of sin-
gle neurons across different behavioral tasks in a common space. 
Second, spatial and nonspatial features of the environment must 
be parameterized and regressed against neural activity. Third, one 
must analyze not only the information encoded by single neurons26  
but apply multivariate analysis techniques that consider the mul-
tidimensional nature of the information encoded by populations 
of neurons27,28.
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The hippocampus is implicated in associative memory and spatial navigation. To investigate how these functions are mixed 
in the hippocampus, we recorded from single hippocampal neurons in macaque monkeys navigating a virtual maze during a 
foraging task and a context–object associative memory task. During both tasks, single neurons encoded information about spa-
tial position; a linear classifier also decoded position. However, the population code for space did not generalize across tasks,  
particularly where stimuli relevant to the associative memory task appeared. Single-neuron and population-level analyses 
revealed that cross-task changes were due to selectivity for nonspatial features of the associative memory task when they 
were visually available (perceptual coding) and following their disappearance (mnemonic coding). Our results show that neu-
rons in the primate hippocampus nonlinearly mix information about space and nonspatial elements of the environment in a 
task-dependent manner; this efficient code flexibly represents unique perceptual experiences and correspondent memories.
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To this end, we recorded the activity of single neurons from the 
right posterior hippocampi of rhesus macaques (Macaca mulatta) 
while they completed two navigation tasks in a single virtual envi-
ronment: first, an associative memory task; second, a cue-guided 
foraging task. In both tasks, neurons showed spatial response 
fields; a linear classifier reliably decoded the animal’s position in 
the maze from the population activity. However, the population 
code for space did not generalize across tasks in the same environ-
ment, indicating that the spatial codes for the environment were 
task-specific. To explain this lack of generalization, task-specific 
activity was examined in the portion of the maze where the popula-
tion code for space was most divergent across tasks. We found that 
hippocampal neurons encoded nonspatial features of the associa-
tive memory task (that is, contexts and objects) when they were vis-
ible in the environment and encoded these features mnemonically 
after they were removed from the environment. Finally, using the 
population activity, we decoded unique combinations of nonspatial 
features in single trials.

Results
Single-neuron spatial information content (SIC) during each 
task in the X-Maze. In these experiments, monkeys were seated in 
a custom-built chair in front of a computer monitor and used a two-
axis joystick to complete tasks that required navigation through a 
virtual reality environment called the X-Maze29 (Fig. 1a). While 
monkeys completed these tasks, we recorded the activity from 
183 individual neurons from the superior aspect of the right mid-
posterior hippocampus (predominantly CA3; see Fig. 1b, Extended 
Data Fig. 1, Extended Data Fig. 2 and Methods). Trajectories were 
planned and verified during electrode insertion using magnetic 
resonance imaging (MRI)-guided neuronavigation (Fig. 1b and 
Extended Data Fig. 1).

The first task monkeys completed was an associative memory 
task. Animals had to navigate to objects in the virtual environ-
ment in a context-dependent manner (Fig. 1c, Extended Data  
Fig. 3 and Supplementary Video 1). The objects were colored disks 
that appeared at the ends of the X-Maze on each trial. The context 
was defined by a texture applied to the maze walls. Each trial of the 
associative memory task started in one end of the maze and included 
five distinct trial epochs that occurred as animals navigated toward 
the objects at the other end of the maze (in order: postreward, pre-
context, context appearance, object appearance, object approach; see 
Fig. 1c, Extended Data Fig. 3 and Methods). For analytical purposes, 
we defined the trial end to be triggered when the subject reached the 
goal object. The trial start was triggered after the reward was deliv-
ered. However, from the monkey’s perspective, navigation through 
the maze was continuous. There was no break or intertrial interval. 
During the postreward and precontext epochs, all maze walls were 
gray and no rewarded goals were visible. When the animal entered 
the central corridor, the ‘context appearance’ epoch began; the trial 
context was cued by applying a wood or steel texture to the walls of 
the corridor and arms of the maze (Extended Data Fig. 3b,c, posi-
tion a). When animals reached the branched point on the opposite 
side of the maze (Extended Data Fig. 3b,c, position b), one of the 
three potentially rewarded colored disks appeared in each arm of 
the maze. This initiated the ‘object appearance’ epoch. The animal 
could examine the objects in either arm of the maze freely and made 
a choice to navigate toward one of the objects. The first turn toward 

the chosen object triggered the start of the ‘object approach’ epoch, 
which ended when the monkey reached the goal.

The context and the two objects were selected randomly on every 
trial. In every session, a new set of three colored disks was used with 
the same two contexts. Thus, a new conditional association between 
context and objects was learned daily. Using a Bayesian state–space 
analysis to estimate the learning state based on the binary trial out-
comes (see Methods), we estimated that the context-dependent 
association between the highest and lowest object was learned after 
an average of 59 trials across sessions (Extended Data Fig. 3d).

The second task monkeys performed each session was a for-
aging task. In the foraging task, animals navigated through the 
X-Maze toward a red volume to receive a juice reward (Fig. 1c and 
Supplementary Video 2). The red volume was randomly assigned 
to one of 84 locations in the maze and randomly repositioned at a 
different location every time the animal reached it. Importantly, the 
virtual environment was unchanged across tasks.

A variety of spatial firing distributions could be seen across 
recorded neurons and across tasks (see Fig. 1d and Extended Data 
Fig. 4 for examples). Such changes were not due to changes in neu-
ronal isolation across tasks (Extended Data Fig. 2). To character-
ize whether individual neurons fired preferentially in certain parts 
of the virtual environment, the X-Maze was spatially binned into 
an isometric, two-dimensional pixel grid covering the entire maze. 
This pixel grid was used to compute the SIC of each neuron, which 
quantifies how many bits of information about the location of the 
animal are transmitted per action potential30–32. Shuffled control SIC 
values were computed by circularly shifting the spike times relative 
to the spatial positions for each trial; shuffled SIC was subtracted 
from empirical SIC to yield a normalized SIC value (see Methods).

The distributions of normalized SIC values were not the same 
across tasks (Fig. 1e; two-sample Kolmogorov–Smirnov test, 
P = 2.4 × 10−8). In the associative memory task, 76.0% of neurons 
(139 out of 183) showed significant SIC. In the foraging task, 27.3% 
of neurons (50 out of 183) had significant SIC. Even among neurons 
with significant spatial information, the distribution of SIC values 
was not the same across tasks (two-sample Kolmogorov–Smirnov 
test, P = 0.013). This suggests that neurons contained more spatial 
information during the associative memory task than during the 
foraging task in the X-Maze.

In addition, we examined whether individual neurons had spa-
tial response fields in the X-Maze by determining whether firing 
rates were elevated in any of the maze pixels using a permutation 
test (see Methods). The number of neurons with firing rates that 
were statistically elevated for each pixel in each task can be seen 
in Fig. 2. The X-Maze was then divided into nine similarly sized 
areas for further analyses (four maze arm areas, two branch areas, 
three corridor areas). Spatial response fields for each neuron were 
defined as any of the nine maze areas with statistically elevated fir-
ing in one or more pixels. In the associative memory task, 70.0% 
of neurons had spatial response fields. In contrast with the for-
aging task, spatial response fields were not uniformly distributed 
throughout the X-Maze (P < 1 × 10−7, χ2(8) = 52.3; Fig. 2a, left). In 
the foraging task, 55.7% of neurons had spatial response fields in at 
least one maze area (102 out of 183 neurons) with a uniform distri-
bution throughout the maze (P = 0.91, χ2(8) = 3.29; Fig. 2a, right). 
The distribution of pixels with significantly elevated firing rates in 
each task, as well as comparisons of individual neuron place field 

Fig. 1 | Behavioral tasks and individual neuron SiC. a, Monkeys were seated in front of a computer monitor and used a two-axis joystick to navigate 
through the virtual reality X-Maze and complete two different tasks. b, Recording locations from the right hippocampi (green reconstruction) of two 
monkeys. Scale bars, 5 mm. c, Overhead view of the X-Maze and the animal’s trajectory through the maze on two consecutive trials in the associative 
memory and foraging tasks. d, Trajectory (transparent gray) and spike locations (transparent red dots) for six example neurons in both tasks in the 
X-Maze. e, Cumulative distribution of SIC values for all neurons (n = 183 per task) showed a statistical difference across tasks (two-sample Kolmogorov–
Smirnov test; two-sided P < 10−7).
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locations within and across tasks with pixel sizes four times larger, 
were qualitatively unchanged (Extended Data Fig. 5). From these 
two complementary analyses, it is clear that some neurons encode 

information about the position of the animal in the maze, and there 
may be differences in the information content of the population of 
neurons across tasks.
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Population-level decoding of space within versus across tasks 
in the X-Maze. The previous results show that individual neurons 
encode information about space in each task. However, statistical  

descriptions of selectivity in single neurons cannot capture the 
wealth of information encoded by neural populations with mixed 
selectivity26–28. Furthermore, the stability of a population code for 
space and the optimal spatial reference frame cannot be assessed in 
single neurons. To better address these questions, we used the fir-
ing rates from the entire population of recorded neurons to decode 
animal position in the X-Maze.

We used a multiclass support vector machine classifier with a lin-
ear kernel to decode the animal’s position in space using neuronal 
firing rates (see Methods). This was done using allocentric and ego-
centric (direction-dependent) spatial reference frames (Fig. 3a) to 
yield empirical (Fig. 3b, colored distributions) and shuffled control 
(Fig. 3b, gray distributions) decoding accuracies. Statistical differ-
ences between accuracy distributions were assessed via a Wilcoxon 
rank-sum test (see Methods).

The classifier predicted position in the maze above chance levels 
in the associative memory task using an allocentric spatial reference 
frame (Fig. 3b; 24.0 ± 5.8% accuracy versus 10.8 ± 4.1% shuffled 
control accuracy; P < 10−31). However, accuracy was poor (Cohen’s 
κ = 0.15; Methods). The classifier systematically confounded struc-
turally similar areas of the maze, as evidenced by the X-shaped dis-
tribution of predictions in the allocentric decoder confusion matrix 
(Fig. 3c, left). When classification was done using the egocentric 
reference frame, decoding accuracy improved (P < 10−10 compared 
to allocentric; 58.4 ± 9.3% versus 19.4 ± 7.2% shuffled control accu-
racy; Fig. 3b, second column). The improved accuracy of a popula-
tion of hippocampal neurons with a direction-dependent reference 
frame is consistent with previous findings across species33.

In the foraging task, decoding accuracy was above chance using 
both reference frames. Decoding accuracy was poor using an allo-
centric reference frame (Fig. 3b, third column: 16.1 ± 4.8% versus 
10.7 ± 4.1% shuffled control accuracy; P < 10−12; Cohen’s κ = 0.06). 
Using the direction-dependent reference frame, prediction accu-
racy was 33.0 ± 7.6% versus 19.3 ± 7.2% shuffled control accuracy 
(Fig. 3b, fourth column; P = 0.09 compared to allocentric).

Cross-task generalization of the population code for space. The 
position of animals in space could be decoded from the population 
of neurons in each task, but it is not clear whether coding of space 
generalized across tasks; that is, whether a process of abstraction 
made the representation of space invariant with respect to the task 
the animal was engaged in. Although single-neuron spatial coding 
that is dependent on a variety of behavioral and cognitive factors 
has been documented in humans, monkeys and rodents, it remains 
possible that stable spatial encoding in at least a subset of neurons 
was veridical and task invariant. On the other hand, spatial repre-
sentations observed in each task could be dependent on encoding 
of task-related features that were relevant at consistent locations  
during each task.

To determine whether the cognitive map of space generalized 
across tasks, we trained a linear support vector machine using trials 
from the foraging task and tested it using trials from the associa-
tive memory task. Classification accuracy when training and test-
ing across tasks fell below the accuracy reported in both foraging 
and associative memory tasks (Fig. 3, fifth column; P < 10−5 and 
P < 10−17, respectively). Results were unchanged when the training 
and testing sets were swapped. The lack of generalization indicates 
that the spatial information carried by the population of recorded 
neurons changes across tasks. Cross-task decoding accuracy was 
not uniform across all areas of the maze, as can be seen in the 
cross-task confusion matrix (Fig. 3c, farthest right; Extended Data  
Fig. 6b; P < 10−5, Kruskal–Wallis test). Decoding accuracy was 
highest in the corridor of the maze (Extended Data Fig. 6b,c; 43%, 
P < 10−15 compared to shuffled control decoding accuracy). This 
suggests that the contribution of individual neurons to direction-
dependent position classification was most similar across tasks in 
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Fig. 2 | Single-neuron spatial response fields in each task. a, Spatial 
histogram showing the number of neurons with a statistically elevated firing 
rate in each pixel in both tasks (top). The summarized histogram (bottom) 
shows the number of neurons with at least one significant pixel in each 
maze area. The asterisks indicates significantly different proportions across 
tasks. McNemar’s test of equal proportions; Bonferroni-corrected P < 0.05. 
b, Locations of coincident place fields for all neurons with more than one 
place field in each task. c, Location of coincident place fields for all neurons 
with at least one place field in each task. N, north; S, south; W, west; E, east.
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the corridor. Notably, cross-task demands were also most similar in 
this area, since only cue-guided wayfinding was required. On the 
other hand, task requirements were different during the approach 
to the arms of the maze, where context-dependent choices were 
required in the associative memory task. In the branch leading 
toward the arm, and on entry into the arm of the maze, cross-task 
decoding accuracy was not different from chance (Extended Data 
Fig. 6c; P = 0.25 and P = 0.85, respectively). Thus, the population 
code for space may be the most similar in areas of the maze where 
task demands are most similar and diverges where task-specific 
information becomes available.

It is possible that place-specific firing can be ascribed to selec-
tivity for eye-on-screen position34 coupled with biased gaze behav-
ior within or across tasks. In each session, the X-Maze tasks were 
bookended by a cued saccade task wherein monkeys were rewarded 
for making a saccade to a small white dot that varied position from 
trial to trial on a gray screen. We compared saccade direction and 
gaze position selectivity in all three tasks for neurons with sufficient 
numbers of saccades and fixations in all tasks (n = 92; see Methods). 
In the cued saccade, foraging and associative memory tasks, 7.6, 
41.3 and 42.4% of neurons were selective for saccade direction, 

respectively. In these three tasks, 28.2, 43.4 and 72.8% of neurons 
were selective for gaze position. Critically, no neurons were selec-
tive for the same saccade direction across tasks and only 2 neurons 
(2.2%) were selective for at least one gaze position across all tasks. 
Thus, saccade direction and gaze position invariably affect only a 
small proportion of hippocampal neurons, suggesting that altered 
fixation patterns across tasks cannot explain the dramatic changes 
in spatial selectivity across tasks.

Neurons encode nonspatial sensory and mnemonic features of 
the associative memory task. The previous results show that the 
population code for space changes across tasks in the areas of the 
X-Maze where associative memory task features (context, object 
color and their conjunction) become visible. One possible expla-
nation for this result may be the emergence of selectivity for such 
features during the associative memory task in single neurons. To 
examine this, we split each trial into five epochs closely correspond-
ing to the five areas of the maze used in the direction-dependent 
spatial decoding (postreward, precontext, context appearance, 
object appearance, object approach; see Fig. 4a and Methods for 
details). Extended Data Fig. 7 shows the spatial firing distribution 
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as well as the firing rate in each trial epoch for six example neu-
rons. The firing rate was modulated across associative memory trial 
epochs for 89.6% of neurons (P < 0.05, Kruskal–Wallis test).

To determine whether neurons encoded features of the associa-
tive memory task that are relevant across the different trial epochs 
(that is, context, object color and their conjunction), we regressed 
the firing rate for each neuron against the trial-varying parameters 
of the associative memory task in each epoch in both a sensory and 
mnemonic manner. This was done using the context and object of 

a given trial and the firing rate in each epoch of the same trial (per-
ceptual encoding; Fig. 4, left plots), or the firing rate in each epoch 
of the next trial (memory encoding; Fig. 4, right plots).

One example neuron (Fig. 4b and Extended Data Fig. 7b (top 
left)) fired almost exclusively between the animal’s initial turn toward 
the chosen object and the moment of first contact (goal approach 
epoch). This neuron was most active during approaches to a sin-
gle object color regardless of context, egocentric (left versus right) 
or allocentric (northeast, northwest, southeast or southwest arm)  

Perceptual encoding
trial n context and object

trial n firing rate

Memory encoding
trial n context and object

trial n + 1 firing rate

Postreward (trial start)

Postreward (trial start)

Pos
tre

war
d

Precontext

Pre
co

nt
ex

t

Precontext

Context appearance

Con
te

xt 
ap

pe
ar

an
ce

Context appearance

Object appearance

Object appearance

Obje
ct 

ap
pe

ar
an

ce

Object approach (trial end)

N
eu

ro
n

R
09

10
.H

c7
.3

F
iri

ng
 r

at
e 

(H
z)

N
eu

ro
n

W
03

25
.A

IM
0.

2
F

iri
ng

 r
at

e 
(H

z)

A
ll 

ne
ur

on
s

(n
 =

 1
83

)
P

ro
po

rt
io

n 
of

 n
eu

ro
ns

 w
ith

si
gn

ifi
ca

na
t β

Obje
ct 

ap
pr

oa
ch

Pos
tre

war
d

Pre
co

nt
ex

t

Con
te

xt 
ap

pe
ar

an
ce

Obje
ct 

ap
pe

ar
an

ce

Obje
ct 

ap
pr

oa
ch

Object approach (trial end)

Trial n

a

b

c

d

a

a

b

b

a
c

b

l2

0

2

0

0.30

0

Trial epoch Trial epoch

Trial n + 1

High-value object
Middle-value object
Low-value object
Wood context
Steel context

High-value object
Middle-value object
Low-value object
Wood context
Steel context

Objects
Context

Context × objects

Fig. 4 | Nonspatial feature selectivity in the associative memory task. a, Selectivity of each neuron for nonspatial features of the associative memory 
task. Selectivity was computed using the trial parameters of trial n and the firing rates from the same trial (perceptual; left plots), or trial n + 1 (memory; 
right plots). b, Example neuron R0910.Hc7.3, an object-color-selective neuron. The letters denote categories with significantly different firing rates within 
a trial epoch (two-sided Kruskal–Wallis test, Bonferroni-corrected, n = 296 trials). The dots indicate the median value; the lines indicate the 25th–75th 
percentiles. c, Example neuron W0325.A1M0.2, an object-value-selective neuron. Conventions are the same as in b; n = 257 trials. d, Proportion of single 
neurons (n = 183) selective for nonspatial associative memory task features: context (blue dot), chosen object color (yellow dot) and combination of these 
two (yellow dot, blue outline).

NATuRe NeuRoSCieNCe | VOL 23 | JANUARY 2020 | 103–112 | www.nature.com/natureneuroscience108

http://www.nature.com/natureneuroscience


ArticlesNaTurE NEurOSciENcE

position, and did not fire when approaching an intermediate value 
object (P < 10−20, Kruskal–Wallis test). This neuron also did not fire 
on goal approach during foraging (Extended Data Fig. 8a).

Another example neuron (Fig. 4c and Extended Data Fig. 7b 
(bottom right)) fired most in the arms of the maze after the reward 
was delivered. This example neuron was selective for previous trial 
features during the postreward epoch (P < 10−4, Kruskal–Wallis 
test). When this selectivity was observed, the object was no longer 
present in the environment; thus, encoding of the object by this 
neuron was mnemonic. This neuron did not consistently fire after 
the reward during the foraging task (Extended Data Fig. 8b). This 
encoding cannot be explained by sensory features such as object 
color, context or reward size alone, but only by the conjunction of 
these features, even though none of these features were visible dur-
ing the postreward epoch.

At the population level, sensory coding for the chosen object 
color was most robust during the object approach epoch (46 out 
of 183 neurons, 25.14%; Fig. 4d, bottom left, yellow dots). The con-
junction of object and context of the previous trial was encoded by 
the same number of neurons during the postreward epoch (Fig. 4d, 
bottom right, yellow dots with blue outline). Encoding of trial con-
text peaked in the corridor of the maze (perceptual: 16 out of 183 
neurons, 8.7%, memory: 18 out of 183 neurons, 9.8%; Fig. 4d, blue 
dots). During the object approach and postreward epochs, context 
selectivity was less prevalent than selectivity for objects and context-
object association.

These results show that encoding of nonspatial features changes 
across trial epochs of the associative memory task, predominantly 
during the object approach epoch when the animals foveate the 
objects and context (perceptual encoding), and after the objects 
are no longer visible (mnemonic encoding). To determine whether 
perceptual and mnemonic encoding are supported by a common 
or separate population of hippocampal neurons, we correlated 
the F-statistics from each neuron’s encoding model during goal 
approach (perceptual) and postreward (memory) epochs. Similar 
proportions of neurons showed perceptual and mnemonic coding 
of contexts (Fig. 5a, left, P = 0.68, McNemar’s test of equal propor-
tions) or objects (Fig. 5a, middle, P = 0.12, McNemar’s test of equal 
proportions). However, for the combination of object and con-
text, the proportion of neurons showing memory coding was sig-
nificantly larger than perceptual coding (Fig. 5a, right, P = 0.0005, 
McNemar’s test of proportions). The strength of perceptual versus 
mnemonic coding in individual neurons was not correlated for trial 
context (Fig. 5b, Spearman’s ρ 95% confidence interval (CI) = −0.12 
to 0.25); in contrast, perceptual and memory coding for objects 
and object-context combinations were correlated (Fig. 5b objects: 
Spearman’s ρ 95% CI = 0.13–0.48; context × object, 0.05–0.40). 
This suggested that there was a partial overlap between perceptual 
and mnemonic information encoded by individual neurons in the  
associative memory task.

Decoding trial features from the population of hippocampal 
neurons. We next examined how the recorded hippocampal neu-
rons form a population-level representation of the trial-varying 
aspects of the associative memory task. We used a linear classifier to 
determine the accuracy with which the population activity of hip-
pocampal neurons can be used to predict the context and object pair 
presented in a given trial (associative memory trial type). First, a 
classifier was trained to predict the context and object of the current 
trial from the three trial epochs with these visible in the environ-
ment (context appearance, object appearance and object approach; 
Fig. 6, perceptual). Second, another classifier was trained using the 
two trial epochs that were linked to mnemonic representations of 
these elements after they were no longer present in the environ-
ment (postreward and precontext; Fig. 6, memory). In both clas-
sifiers, each neuron’s firing rate in each trial epoch was used as an  

independent feature; we used a logistic classifier with elastic net 
regularization to avoid problems of overfitting associated with hav-
ing many features and a limited number of model training examples 
(see Methods).

Using only the perceptual or memory epochs, prediction accu-
racy was above chance (perceptual: 36.3 ± 14.2% accuracy versus 
12.3 ± 2.7% shuffled control accuracy; P < 10−86, Wilcoxon rank-
sum test, Cohen’s κ = 0.24; memory: 26.6 ± 12.5% accuracy versus 
12.8 ± 3.7% shuffled control accuracy; P < 10−58, Wilcoxon rank-
sum test, Cohen’s κ = 0.12). Using an equal number of trial epochs 
for training and testing, decoding accuracy was higher for percep-
tual epochs (object appearance and object approach) than using the 
two mnemonic trial epochs (P < 0.001, Wilcoxon rank-sum test; 
Extended Data Fig. 9). Using the firing rates from both the per-
ceptual and memory trial epochs in a single classifier, classification 
accuracy further increased (3.29 ± 1.12 times permuted control; 
42.2 ± 14.4% accuracy; P < 10−97, Wilcoxon rank-sum test; Cohen’s 
κ = 0.31). This is consistent with the observation in Fig. 5 that 
that perceptual and mnemonic encoding did not fully overlap in  
individual neurons.

These single-neuron and population-level results provide 
insights into how the critical elements of associative memories are 
encoded by hippocampal neurons. All features of a trial that are rel-
evant to the monkeys’ decision-making are represented in a pro-
portion of neurons. This representation is sufficient for a ‘read-out’ 
mechanism to extract the identity of context and objects from each 
trial during object viewing and after their disappearance.

Discussion
In the current study, we recorded the activity of individual hip-
pocampal neurons while monkeys performed a foraging and 
an associative memory task in the same freely navigable maze  
(Fig. 1). During both tasks, hippocampal neurons encoded spatial 
information, although single-neuron (Fig. 2) and population-level 
coding of space changed across tasks (Fig. 3). Critically, observed 
changes to spatial coding across tasks were attributed to selectiv-
ity for trial-varying features of the associative memory task vis-
ible in the environment (sensory representation) and when they 
were no longer visible (mnemonic representation) (Figs. 4 and 5). 
The population could be used to decode trial types from both the 
sensory and mnemonic epochs of the associative memory task  
(Fig. 6). These results extend previous characterizations of hip-
pocampal neurons, showing that encoding of space is nonlinearly 
mixed with sensory and mnemonic coding of perceptually and 
cognitively defined features.

Encoding of space in the primate hippocampus. The hippocam-
pus has been referred to as the global positioning system of the 
brain. This claim is supported by decades of study showing allo-
centric spatial firing fields of hippocampal place cells in rodents19. 
Place cells are supported by a vast network of neurons in the hip-
pocampus and neighboring brain areas with complementary spa-
tial coding schemes19,35. Whether spatial response fields recorded 
from the hippocampi of primates are like place fields described in 
rodents has long been subject to debate, in part due to the distinct 
way experiments are conducted in the different species. Several 
studies have shown spatial firing fields for neurons recorded from 
the hippocampi of monkeys performing an operant joystick task 
that resulted in the movement of a motorized cab around a labora-
tory36,37. However, it is difficult to compare these with rodent stud-
ies since movement in these tasks was highly restricted, place fields 
were defined using a liberal statistical criterion and the confounding 
effects of view and other task-related factors were not characterized. 
Similar issues complicate the first studies of hippocampal activity 
in virtually navigating primates23. The first experiments recording 
animal and gaze position in the environment described spatial view 
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cells in the hippocampus20, suggesting that the primate hippocam-
pus encodes a plethora of signals related to vision and the oculomo-
tor system, which are not documented in rodents9.

Studies of spatial navigation in virtual reality environments have 
also been conducted in humans. In a study of patients with epi-
lepsy completing a delivery task in a virtual town21, firing rates of 
single hippocampal neurons were tested using an analysis of vari-
ance for main effects of position within the environment, objects 
viewed in the environment, navigational goal and interactions. It is 
possible that trial-varying factors such as goal location could have 
modulated spatial responses, which is consistent with our find-
ings. A recent study with monkeys performing a virtual wayfinding 
task has provided a more comprehensive analysis of hippocampal 
encoding25. In this study, 41% of hippocampal neurons had signifi-
cant SIC. However, only a small percentage of neurons exclusively 
encoded spatial position, which is consistent with our findings. An 
extension of this work shows that spatial response fields in a subset 
of these neurons are invariant to the specific distal landmarks that 
define an environment24. This may suggest that hippocampal neu-
rons form highly task-specific representations of schematic vari-
ables in an abstract task space; alternately, they may encode motor 
or cognitive variables that are common across environments, such 
as distance to the reward38. However, these alternate explanations 
would not account for task-specific activity observed in the present 
study (Extended Data Fig. 8) or the selectivity for particular objects 
and contexts in the associative memory task (Fig. 5).

Our study builds on previous studies of spatial coding in the 
primate hippocampus by examining single-neuron and popula-
tion-level codes for a single virtual environment across two tasks.  

Our results suggest that neuronal ensembles most reliably encode 
space in an egocentric direction-dependent reference frame. The 
magnitude of this effect could be driven by the fact that in our task 
allocentric cues were not needed to obtain rewards. Spatial repre-
sentations were task-dependent, in contrast to predictions of a pure 
spatial role of the hippocampus in navigation19,35. Furthermore, 
task-dependent neuronal activity was attributed to perceptual and 
mnemonic selectivity for task-relevant features that were observed 
at varying positions in the environment.

Mixed selectivity for spatial and nonspatial features by single 
neurons and neuronal ensembles. Spatial and nonspatial encod-
ing have been previously observed in hippocampal neurons across 
species. The hippocampus has been theorized to encode all aspects 
of attended experience39 and it has been suggested that encoding 
of perceptual content may support recollection through high-
resolution associative binding of percepts40. In rodents, subsets of 
hippocampal neurons have been shown to ‘map’ continuous scalar 
quantities other than physical space, including time41 and pitch42. 
In primates, hippocampal neurons show stimulus selectivity in 
delayed match to sample tasks12,43. A recent study that used a cued 
wayfinding task25 reported neurons that convey information related 
to heading direction, gaze position and ‘state–space’ (combination 
of these variables and/or recent route and actions). Neurons in the 
monkey hippocampus can be selective for nonspatial stimuli such as 
faces and voices44. Similarly, selectivity for faces and places is more 
alike when patients are cued to remember their association45.

Although a spatial and nonspatial hippocampal activity has been 
described, it was previously unclear whether changes in spatially 
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specific firing could be related to associative learning and memory 
for features of the environment when their spatial position is not 
relevant. We examined task-specific encoding of trial parameters in 
the firing rates of hippocampal neurons from the current (percep-
tual; Fig. 4, trial n) and previous (mnemonic; Fig. 4, trial n + 1) trial. 
Perceptual and mnemonic encoding of trial features were found in 
separate populations of neurons (Fig. 5). Importantly, the popula-
tion activity vector could be used to decode single trial-specific  
feature combinations (Fig. 6).

Mixed coding schemes can be highly robust and computation-
ally efficient28,46. In these schemes, selectivity across multiple fea-
ture dimensions (for example, space and task-relevant objects) 
can be mixed in a linearly additive or nonlinearly additive man-
ner. If the spatial and nonspatial coding observed in the present 
study was linearly additive, the modulation of neural firing rates 
by nonspatial task-relevant features would be independent of 
modulation of firing rates by spatial position. However, the sin-
gle-neuron and population-level representation of space did not 
generalize across tasks. This suggests that primate hippocampal 
neurons encode spatial and nonspatial information in a nonlin-
early mixed manner.

Sensory information can be compressed using a simple network 
trained as a sparse autoencoder47. The architecture of the hippo-
campus has long been compared to that of an autoassociative net-
work that is capable of analogous compression of information48–50. 
Mixed coding of spatial and nonspatial components of unfamiliar 
and familiar episodes may be an emergent consequence of this pro-
cess; this is consistent with the task-dependent representations of 
spatial and nonspatial selectivity observed in the present study and 
elsewhere5–7. The distinct coding of these spatial and nonspatial  
elements of experience across time and space may be viewed as a 
prerequisite for encoding of episodic memories.

Conclusions
In this study, we sought to reveal how coding of space and nonspa-
tial features interact in the primate hippocampus in virtual environ-
ments. Key findings include the encoding of space by single neurons 
and neuronal populations, as well as the emergence of perceptual 
and mnemonic codes for nonspatial features in the same popula-
tions when the task requirements change but the environment spa-
tial layout is preserved. Instead of framing the primate hippocampus 
as the brain’s global positional system, our results better reflect the 
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processes inherent in a general abstract processing system that is 
driven by a broad range of behaviorally relevant inputs. In such a 
system, flexible representations could provide the basis for learn-
ing and storing relevant information unique to an experience across 
behaviorally relevant dimensions in a context-dependent manner.
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Methods
Experimental animals. Two rhesus macaques (Macaca mulatta; 7 years old,  
7 kg and 14 years old, 12 kg) participated in all experiments. These monkeys  
were trained to perform three behavioral tasks and given a juice reward for their 
efforts in each task (400–1,000 ml daily). Monkeys also received food rewards 
as positive reinforcement at the beginning and end of each session. Behavioral 
patterns and body weights were closely monitored to ensure stable health 
conditions throughout the experiment. All animal procedures complied with the 
Canadian Council on Animal Care guidelines and were approved by the McGill 
University Animal Care Committee.

Electrophysiological recordings. The entire protocol for planning the surgical 
procedures, recording from the hippocampus and verifying electrode locations is 
schematized in Extended Data Fig. 1.

Before any surgical procedures, a naïve 500 μm isotropic T1-weighted 3-Tesla 
MRI was taken for each animal (Extended Data Fig. 1, step 1). Using these scans, 
head post placement and chamber trajectory were planned using an MRI-guided 
neuronavigation suite (Brainsight TMS; Rogue Research; Extended Data Fig. 1, 
step 2). Chambers were positioned over the prefrontal cortex, such that electrode 
trajectories were perpendicular to the long and transverse axis of the right middle-
to-posterior hippocampus. Following surgical implantation of the head post and 
recording chamber, a computed tomography scan was acquired with cannulas 
passing through the chamber grid at cardinal locations (Extended Data Fig. 1, 
step 3). The resultant computed tomography and MRI scans were co-registered so 
that electrode trajectories and terminal recording locations could be specifically 
mapped to chamber grid holes (Extended Data Fig. 1, step 4).

All data were collected over the course of 37 recording sessions. In each  
session, hippocampal activity was recorded using up to 4 single high-impedance 
tungsten electrodes (0.4–1.5 MOhms) simultaneously. Before every recording 
session, electrode trajectories were mapped to the MRI and the expected distances 
to gray and white matter were measured (Extended Data Fig. 1, step 5). These 
expected waypoints were compared against changes in neural activity while the 
electrode was lowered to the terminal recording site (speed 0.01 mm s−1; Extended 
Data Fig. 1, step 6). Distances to putative CA3 recording sites were adjusted  
online as necessary.

Neurons from the hippocampus were isolated while animals sat quietly in the 
dark recording room since hippocampal neurons typically exhibit elevated firing 
rates in this state compared to foraging or other exploratory behaviors. Local 
field potentials were monitored for bouts of theta-like activity and changing low-
frequency power profile as a function of arousal. Multiunit activity was monitored 
for sparse activity and burstiness characteristic of hippocampal pyramidal neurons. 
Hippocampal activity was recorded at 30,000 Hz using a multichannel recording 
system (128-channel Cerebus Data Acquisition System; Blackrock Microsystems) 
for sorting and offline analysis. Cluster cutting to isolate neurons from multiunit 
clusters was done using Plexon software (Offline Sorter version 2.8.8; Plexon Inc). 
Cluster cutting was done agnostic to time; however, neurons with continuously 
morphing principal components and/or a complete loss of activity as a function of 
time were excluded from the analyses. Any neurons with task-invariant, reward-
related activity were excluded from the analyses.

In one monkey, postrecording verification of electrode trajectories was 
possible. This was done using a 350 μm isotropic susceptibility weighted 7-Tesla 
MRI (Extended Data Fig. 1, step 7, cool color map). This scan was co-registered to 
the naïve 3-Tesla anatomical MRI and shows a high degree of concordance between 
expected and actual trajectories and terminal recording locations.

Experimental setup. During the training and experimental sessions, the monkeys 
were seated in a custom-built chair in front of a computer monitor. The chair was 
fitted with a two-axis joystick (part no. 212S15S8383; P-Q Controls), which the 
monkeys used to navigate freely through the virtual environment. Player position 
within the virtual environment was updated and recorded at 75 Hz, which matched 
the monitor refresh rate. While seated, the head position of the monkey was fixed 
to facilitate eye position and intrahippocampal recordings. Eye position on the 
screen—and thus gaze within the virtual environment—was monitored at 500 Hz 
via video-based eye tracking (EyeLink 1000; SR Research).

Behavioral tasks. After electrode positions were fine-tuned to optimize neuronal 
signal-to-noise ratios, monkeys typically sat quietly in the darkened room for 
20 min, allowing sufficient time for electrodes to settle. After this, monkeys 
proceeded to complete three behavioral tasks: a cued saccade task; a virtual 
associative memory task; and a virtual foraging task. At the end of each session, the 
cued saccade task was repeated and monkeys again sat quietly in the dark for an 
additional 10–20 min of recording.

In the cued saccade task, monkeys were trained simply to fixate on a 1 degree 
visual angle white dot that could appear at any of 9 locations on the monitor in a 
24 × 16 degree visual angle grid.

The remaining two tasks were incorporated into a virtual environment custom-
built using a video game engine (Unreal Engine May 2012 release; Epic Games) 
and parameters of the behavioral tasks could be monitored and controlled in real-
time via MATLAB (MathWorks)29. Monkeys were trained to freely navigate around 

this environment called the X-Maze using a two-axis joystick. Monkeys completed 
both virtual reality tasks in all experimental sessions in a blocked design (Extended 
Data Fig. 2). Sessions where only one of the virtual reality tasks was completed 
were removed from the analyses.

In the virtual foraging task, animals were visually cued to navigate toward  
an easily identifiable target (red fog) that was consistently rewarded. The target 
could appear at any of 84 locations in the environment (Fig. 1c, foraging task;  
84 dotted locations for display purposes only). Target locations in the X-Maze  
were independent across trials.

In the associative memory task, monkeys navigated the X-Maze to learn 
a context-dependent reward value hierarchy. Reward value associations were 
dependent on environmental cues (textures applied to the maze walls; context 1 
and context 2) and three differentially rewarded colored disks (objects A, B and C). 
Object reward values were context-dependent, that is, in context 1, object A>B>C, 
and in context 2, object C>B>A (Fig. 1c and Extended Data Fig. 3A). Object colors 
were pseudorandomly selected from a seven-color set at the beginning of each 
session to prevent repetition of colors across neighboring sessions. Thus, a new 
context-object hierarchy was learned every day.

On a single trial, animals started at either the north or south end of the 
X-Maze. They then navigated through a long central corridor toward the opposite 
end of the maze. One of two possible textures (wood or steel) was applied to some 
of the walls of the maze when the monkey reached the corridor (Extended Data 
Fig. 3b,c, position a). At the end of the corridor, animals reached a forked decision 
point with each of the two arms containing one of the three possible colored 
objects (Extended Data Fig. 3b,c, position b).

On individual trials, the context was randomized independently, as was the 
object-color combination. Object colors were randomly assigned to either the left 
or right arm of the maze; the same two colors could not appear in each arm of the 
maze on a single trial.

The quantities of juice reward given for successful completion were fixed 
between the cued saccade, foraging and middle reward value of the associative 
memory tasks.

Eye movement classification. We used a custom toolbox to parse the eye signal 
collected via video-oculography into saccades, fixations, smooth pursuits and 
postsaccadic oscillations51. Briefly, the initial identification of putative saccades was 
done by: (1) iteratively calculating a saccade acceleration threshold; (2) grouping 
threshold crossings within 40 ms into a putative saccade; and (3) ignoring putative 
saccade groups shorter than 10 ms. The remaining segments of the eye signal were 
further classified by foveation type.

For all putative saccadic periods, the maximum velocity was calculated; then, 
the onset and offset were identified precisely by comparing the main direction and 
intersample changes in direction. Saccade boundaries were defined when the signal 
was either above a high threshold (60°) for 1 sample, or above a low threshold for  
3 consecutive samples (20°). This method differentiates between eye movement 
types since saccade direction is very consistent, whereas camera noise leads to 
higher intersample variance during smooth pursuits and fixations. Once saccades 
were identified, direction and amplitude were calculated based on the onset and 
offset points for all saccades during the visually guided task, including intertrial 
intervals, and for all completed trials in both virtual navigation tasks. These 
saccades were used for the analyses of saccade direction selectivity. Saccade offset 
locations were used to analyze gaze position selectivity on the screen.

Quantification and statistical analyses. Statistics. For each analysis, the 
exact statistical test used is described in the following sections. In general, 
permutation tests were used for single-neuron analyses of SIC, spatial response 
fields, saccade direction selectivity and gaze position selectivity. Each neuron’s 
selectivity for features of the associative memory task was assessed using multiple 
linear regression in conjunction with parametric tests of significance that rely 
on F-statistics to assess significance of individual coefficients. Distributions 
of decoding accuracies were compared using Wilcoxon rank-sum tests and 
further examined using Cohen’s κ statistic. No statistical methods were used to 
predetermine sample sizes but our sample sizes are similar to those reported 
previously15. As stated previously, goal location in the cued saccade and foraging 
tasks were randomized on every trial. In the associative memory task, objects 
and context were randomized independently on every trial. Data collection 
and analysis were not performed blind to the conditions of the experiments. 
Additional information related to the Methods can be found in the Life Sciences 
Reporting Summary.

Learning analyses. To demonstrate that monkeys learned the importance of context 
in guiding behavior in the associative memory task, we used a state–space analysis 
to estimate the learning state based on previous and future trial outcomes from 
the perspective of an ideal observer to estimate a hidden variable52. This produces 
an estimate of the latent learning state, as well as a 95% confidence interval of the 
learning state. Extended Data Fig. 3d shows the average learning state, as well as 
the average bounds for the 95% confidence interval for high-low trials across all 
sessions. Learning is said to have occurred when the lower 95% confidence interval 
of the estimated learning state exceeds 50% (refs. 15,52).
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Spatial response fields. To determine whether each neuron fired more action 
potentials than expected by chance in any area of the X-Maze in each task,  
we used a statistical permutation test based on spatial position and spike rasters  
for each neuron (Fig. 2 and Extended Data Fig. 5). First, the X-Maze was  
parsed into a 32 × 12 pixel grid. For each trial, a vector of player positions 
(occupied pixel number) was created at 1 ms resolution. For each recorded neuron,  
a corresponding binary vector was produced with 1 ms resolution, denoting the 
presence or absence of an action potential. By collapsing across trials, the occupied 
time and number of recorded action potentials were computed. To determine if 
this number was significantly above chance for each pixel, the vector of occupied 
pixels was circularly shifted for each trial and the firing rate in each pixel was 
recomputed. This circular shuffling procedure was done 1,000 times. Any pixel 
with an empirical firing rate exceeding percentile 1-α was statistically significant, 
where α = 0.05/total number of occupied bins. Pixels with a total occupancy of less 
than 200 ms were excluded. Spatial response fields were defined as any of the 9 
architecturally distinct maze areas (4 arms, 2 branches, 3 corridor sections; see  
Fig. 2, Extended Data Fig. 5 and Fig. 2 (allocentric reference frame)) with at least 
one statistically elevated spatial bin.

The specificity of each neuron’s spatial response map was quantified using the 
SIC31,53 (Fig. 1e). Each neuron’s information content (L; in bits) is defined as

∑λ λ= P
i

L

i i

where L is the total number of pixels and the proportion of occupied time (o) in the 
ith pixel (Pi) is defined as
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and the average firing rate per pixel λ  is λ λ= ∑ Pi
L

i i.
SIC was computed for each neuron for each pixel occupied for more than 

200 ms. A null distribution of SIC (and corresponding null spatial information 
maps) was computed for each neuron by circularly shifting the vector of occupied 
pixel numbers 1,000 times before computing the spike rate maps for that neuron. 
Neurons with summed SIC exceeding the 95th percentile of the null distribution 
were deemed statistically significant. The mean SIC from the shuffled null 
distribution for each neuron was subtracted from the empirical SIC value for that 
neuron, yielding a normalized SIC value for each neuron. These normalized SIC 
values are shown in the cumulative distribution plot in Fig. 1e.

For visualization, conventional firing rate maps (Extended Data Fig. 4) were 
plotted for the example neurons in Fig. 1d. In these maps, the pixel-wise firing 
rates were smoothed with a 3-bin Gaussian kernel41. Color maps were consistent 
within neuron and across tasks, with the maximum and minimum firing rates 
denoted separately for each neuron. The color map was perceptually nonlinear and 
unordered (jet), consistent with previously published work54.

Spatial classification analyses. We used a linear support vector classifier55 to determine 
whether the population of all recorded neurons could reliably encode position in the 
maze (Fig. 2). The same procedures were used for all spatial classification analyses, 
starting with firing rates for all neurons in all trials and respective conditions. ‘Trials’ 
here refers to passes through each area of the X-Maze. All neurons that did not have 
at least 10 trials in all areas were excluded from all classification analyses (n = 152 
included). To begin, we randomly subsampled ten trials from each condition for 
each neuron, creating an ensemble subsample. For subsequent classification, we 
used a linear kernel support vector machine, cross-validated with stratified k-folds. 
Specifically, we split the ensemble subsample into five stratified groups of trials (five 
folds), with four folds constituting the training set and one fold reserved for testing. 
At this point, the firing rate of each neuron in all k-folds was z-scored using the mean 
and s.d. of the training set only for that neuron (not the testing set). A linear kernel 
model was fitted to the ensemble subsample using L1-regularized L2-loss support 
vector classification. An important benefit of using L1 regularization is automatic 
parameter selection on the model inputs; whereas L2 regularization yields parameter 
weights very close to zero, L1 regularization instead shunts weights directly to 
zero. This results in a trained model that is both sparse and more interpretable. 
The trained model was subsequently tested on the reserved testing fold to assess 
prediction accuracy. The procedure for normalization, model training and testing 
was repeated five times in total, so each k-fold of the ensemble subsample was used 
as the testing set once. The entire procedure—starting from the 10-trial ensemble 
subsampling—was repeated 100 times, yielding a total of 500 iterations of the 
support vector machine testing procedure.

A permutation procedure was used to determine chance prediction accuracy 
in all cases. This proceeded similarly to the training and testing procedures 
described earlier. However, after creating the ensemble subsample and before 
splitting the ensemble subsample into stratified k-folds, the condition labels were 
randomly permuted and classification analyses then proceeded exactly as described 
previously. This procedure was repeated 20 times for each ensemble subsample, 
yielding a total of 10,000 individual iterations of the support vector machine  
testing procedure.

It is important to note that each neuron’s firing rate was z-scored in the  
training set only and within each task independently before classification.  
This negates the possibility of spurious similarity of cross-task classification 
models attributed to within-neuron similarity in baseline firing rates across tasks, 
independent of area-specific changes in firing rate. Similarly, this negates the 
possibility of spurious dissimilarity of cross-task classification models attributed  
to within-neuron changes in baseline firing rates across tasks, independent of  
area-specific changes in firing rate.

Saccade direction selectivity. To examine saccade direction selectivity, we binned 
directions in eight 45° bins, starting with a center on 0°. A bin was only analyzed  
if there were at least seven saccades in it; a neuron’s saccade direction selectivity 
was only analyzed with a minimum of five saccade direction bins. The firing rate 
was calculated for the 150 ms before saccade onset to get the average spike rate for 
each direction.

Significant direction selectivity for each neuron was assessed using a 
permutation test. Firing rates and directions were randomly shuffled 1,000 times, 
generating 1,000 null distributions for each saccade direction for each neuron. A 
neuron was categorized as being selective for a direction if it had a spike rate that 
was in the top 5th percentile of the null distribution after Bonferroni correction 
(α = 0.05/number of direction bins).

Gaze position selectivity. Each on-screen foveation was categorized within one 
of nine 12° × 8° screen areas. For each foveation within each screen location, a 
neuron’s firing rate was calculated in the 200 ms after saccade offset. For a location 
to be included, at least seven saccades in that location were needed. Foveation 
location selectivity was tested in each task for all neurons, with enough foveations 
in at least six screen locations in each task. Like saccade direction selectivity,  
gaze position selectivity of each neuron was assessed using a permutation-derived 
null distribution.

Nonspatial feature selectivity. For two example neurons, we determined whether 
firing rate varied in each trial epoch as a function of nonspatial trial features 
(chosen object color, trial context and their conjunction) from the current and 
previous trial (Fig. 5a). Key trial events delineated trial epochs. The postreward 
and precontext epochs were equally split intervals of time between the start of the 
current trial (approximately 200 ms after reward from the previous trial ended) 
and the first frame where the context material was applied to the walls of the 
central corridor. The context appearance epoch started at this frame and extended 
for the entire path of the animal through the corridor. On reaching the end of 
the corridor, the animal’s view in the maze was gently corrected to face cardinal 
direction north or south precisely; subsequently, both objects were triggered to 
appear simultaneously at the ends of the maze. The frame where the objects were 
first visible marked the end of the context appearance epoch and the start of the 
object appearance epoch. Animals were free to take as long as needed to make a 
decision to navigate to the left or right object. The first frame at which the animal’s 
orientation deviated from the cardinal north or south direction, as part of a 
rotation that eventually exceeded 10° of deviation from midline, marked the end of 
the object appearance epoch and the start of the object approach epoch. The object 
approach epoch ended when the animal first touched the chosen object for that 
trial. Note that the next trial’s postreward epoch started approximately 200 ms after 
the end of the reward delivery.

We used multiple linear regression to determine whether each neuron’s firing 
rate was modulated as a function of nonspatial trial features (that is, trial context, 
trial object colors and their conjunction) in each trial epoch of the associative 
memory task. This procedure was repeated using trial features for the current and 
previous trial. Formally,

β β β β ε= + + + +y x x xij ij ij ij ij ij ij ij ij0 1 1 2 2 3 3

where y describes the change in a neuron’s firing rate within each task epoch  
(i; 1, postreward epoch; 2, precontext; 3, context appearance; 4, object appearance; 5,  
object approach) for current and previous trial features (j; 1, current trial features; 
2, previous trial features). Fit parameter β0 describes the intercept of the regression 
line, ε estimates the residual, and β1, β2 and β3 describe the effect of chosen 
object, trial context and their conjunction, respectively. We assessed the statistical 
significance of each of these parameters using a partial F-test, wherein the error 
of the full model is compared to that of a model with one parameter omitted. 
The proportion of all neurons (n = 183) with significant fit parameters for object, 
context or their interaction is reported in Fig. 4c. Data distribution was assumed to 
be normal but this was not formally tested.

Sensory versus mnemonic trial feature encoding. The F-statistics of the fit 
parameters β1, β2 and β3 were used to compare sensory and mnemonic encoding of 
associative memory trial features in individual neurons. Specifically, Fig. 6a shows 
the scatterplot of the regression coefficients of neurons during the goal approach 
epoch (sensory encoding) versus the postreward epoch (memory encoding).

The proportion of neurons with significant regression coefficients for each 
parameter was compared using the McNemar’s test of proportions (Fig. 5a, insets).
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The relationship between sensory and memory encoding for each trial 
parameter for each neuron was characterized using Pearson’s ρ (Fig. 5b). The value 
of ρ was calculated over 10,000 bootstrap iterations; Fig. 5b shows the median and 
96.7% confidence interval (α = 0.05/number of trial parameters).

Trial type classification. Trial type classification (Fig. 6) was done using the Glmnet 
package56 using firing rates from all neurons included in the spatial decoding 
analyses (n = 152). For the perceptual condition, each neuron’s firing rate from the 
corridor, goal appearance and goal approach epochs were included as predictors. 
For the memory condition, firing rates from the postreward and precontext epochs 
were used as predictors. In the sensory + memory condition, all five epochs were 
used. Because of the high ratio of model predictors to training and testing examples 
for these analyses, Glmnet classification was used with elastic net regularization. 
A nested cross-validation procedure was used to appropriately tune the model 
hyperparameters (regularization parameter λ and elastic net L1–L2 weighting 
parameter α via Grid Search) and test on hold-out sets of trials never seen by the 
trained model.

Statistical evaluation of classifier performance. The mean and s.d. classification 
accuracy reported in this study includes testing of each individual k-fold. Statistical 
comparisons of classification accuracy were run using normalized accuracy 
distributions, wherein the distribution of empirical accuracy values for a condition 
was divided by the mean accuracy of the shuffled control values for that condition. 
Significant differences between normalized accuracy for two conditions were tested 
using a two-sided Wilcoxon rank-sum test, Bonferroni-corrected for the total 
number of distribution comparisons.

Classification model reliability was further evaluated using Cohen’s κ (ref. 57);  
κ is an objective measure of classification reliability. Unlike raw or chance-
normalized prediction accuracy, κ provides a meaningful metric with which 
to compare performance across classifiers—even with uncommon numbers of 
classes—because it is a bound statistic that relies on the observed and expected 
proportions of correct predictions for each class of a model; it is agnostic to the 
number of classes being differentiated. It is described as

κ =
−
−

p p
p1

o e

e

where po is the proportion of correct predictions and pe is the probability of 
guessing the correct class by chance.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data can be downloaded at https://robertogulli.com/data. Further information and 
requests for resources and protocols should be directed to and will be fulfilled by 
the lead contact, R.A.G.

Code availability
The code used in the study is available upon request from R.A.G.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Hippocampal recordings: planning, mapping and verification. Schematic representation of the major steps in planning, mapping, 
and verification of electrode trajectories and recording sites. In all cases, scale bars represent 10 mm. 1. Prior to any surgical procedures, a 3T MRI was 
taken of the naiive monkey. 2. Using Brainsight (Rogue Research, Montreal, Canada), the chamber trajectory was planned. The skull was then 3D-printed, 
and a mock surgical procedure was done to recreate the chamber trajectory. A custom-made footed chamber was then formed to the skull at its 
intended placement with the intended trajectory. 3. A titanium (monkey R) or silex (monkey W) chamber was implanted along the planned trajectory. 
Subsequently, a post-implant computed tomography scan was taken with the recording grid and electrodes in place in order to visualize the electrode 
trajectories. 4. The computed tomography scan was co-registered to the naiive MRI. 5. The updated trajectory of each grid hole was mapped. At each 
grid hole used for recording, expected depths the cortical surface, grey matter/white matter transitions, and ultimately the hippocampal region of interest 
were mapped prior to recording. 6. During each recording session the previously mapped values were monitored during electrode guidance towards the 
hippocampal region of interest. 7. In monkey R, electrode tracts were visible in a post-experimental 7T MRI acquisition. This procedure was not possible  
for monkey W.
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Extended Data Fig. 2 | individual neuron characteristics and example neurons. A) Burst fraction, spike width, and firing rate of all recorded neurons 
(n = 183). Light grey circle; example neuron W0325.A1M0.2 Dark grey circle; example neuron R0910.Hc7.3. B) Example neuron W0325.A1M0.2 inter-
spike-interval distribution and average waveform. Shaded area, SEM. Below, spike raster as a function of time in the experimental recording session. C) 
Example neuron R0910.Hc7.3 inter-spike-interval distribution and average waveform. Shaded area, SEM. Below, spike raster as a function of time in the 
experimental recording session.
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Extended Data Fig. 3 | example associative memory task reward hierarchy. A) Example of the reversed two-context, three-object reward value hierarchy 
for recording session W0325. B) Two example trials of the associative memory task from the recording session. Subject trajectories through the maze are 
colored according to the time from trial start (color bar). White arrow indicates the object of higher reward value. C) Representative first-person-view of 
the monkeys during each trial at position b. White arrow indicates the object of higher reward value. D) Estimated learning state averaged for the high-low 
value context-dependent association across all sessions, and 95% confidence interval of this estimate (n=37 sessions).
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Extended Data Fig. 4 | example neurons, smoothed firing rate maps. Smoothed firing rate maps of the six example neurons seen in Fig. 1d. Pixel-wise 
firing rates were smoothed with a 3-bin Gaussian kernel. Color maps are consistent within neuron and across tasks, with the maximum and minimum 
firing rates denoted separately for each neuron.
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Extended Data Fig. 5 | Spatial response fields when computed with larger pixel sizes. Conventions are the same as in Fig. 2. However, all visualizations 
and statistics have been done with pixels that are 4 times larger. (A) Spatial histogram showing the number of neurons with statistically elevated firing 
rate in each pixel in both tasks (top). The summarized histogram (bottom) shows the number of neurons with at least one significant pixel in each maze 
area. *significantly different proportion across tasks; McNemar’s test of equal proportions, p<0.05, Bonferroni-corrected. (B) Locations of coincident  
place fields for all neurons with more than one place field in each task. (C) Location of coincident place fields for all neurons with at least one place field  
in each task.

NATuRe NeuRoSCieNCe | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Articles NaTurE NEurOSciENcE

Extended Data Fig. 6 | Cross-task decoding accuracy in each area of the X-Maze. A) Cross-task decoding accuracy (orange) and decoding accuracy 
when the maze area labels were shuffled (also seen in Fig. 2b). Grey bars, mean. B) Confusion matrix derived from the cross-task decoding analysis  
(also seen in Fig. 2c). White numbers indicate the mean decoding accuracy within each maze area. C) Cross-task decoding accuracy in each maze area 
(colored lines) alongside the chance decoding accuracy distribution (shuffled control, grey).
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Extended Data Fig. 7 | Neuronal activity across trial epochs of the associative memory task. A) Overhead view of the X-Maze and the subject’s trajectory 
through the maze on two consecutive trials. Each trial contains five distinct trial epochs. During the Post-reward and Pre-context epochs, all maze walls 
are grey and no rewarded objects are visible. Once the subject enters the central corridor, the context is cued using a wood or steel material applied to 
some of the maze walls. Once the subject leaves the corridor for the branched area of the maze, an object is made visible simultaneously in each arm of 
the maze. Subjects learn a reversed context-object reward value hierarchy by trial and error. B) Spike locations and firing rate by trial epoch for six example 
neurons during the associative memory task. Left: trajectories through the X-Maze (translucent grey) and spike locations (translucent red). Right: Box plot 
showing firing rate by trial epoch in the associative memory task. Dots indicate median value; lines indicate the 25th to 75th percentile; outliers are plotted 
individually. *, p<0.05 compared to the trial epoch with the lowest firing rate; Kruskal-Wallis, Bonferroni-corrected.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Rewarded-aligned spike rasters. A) Rewarded locations in session R0910 during the Associative memory task (left) and Foraging 
task (right). B) Reward-aligned rasters for example neuron R0910.Hc7.3 in each task. Black ticks mark the times of action potentials on each trial. The red 
lines mark the reward delivery for each trial. C) Rewarded locations in session W0325 during the Associative memory task (left) and Foraging task (left). 
D) Reward-aligned rasters for example neuron W0325.A1M0.2 in each task.
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Extended Data Fig. 9 | Decoding trial type from an equal number of perceptual and mnemonic trial epochs. Distribution of classification accuracies from 
decoding analysis of trial type (trial context and object pair) from perceptual (object appearance, object approach) or memory (post-reward, pre-context) 
trial epochs in the associative memory task. *p<0.05, two-sided Wilcoxon rank-sum, n=50 per distribution. Grey bars, mean.
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