Scuola Superiore di Neurologia

V CORSO: "Neuroimmagini nella Malattia di Parkinson e Parkinsonismi"

MIBG Scintigraphy

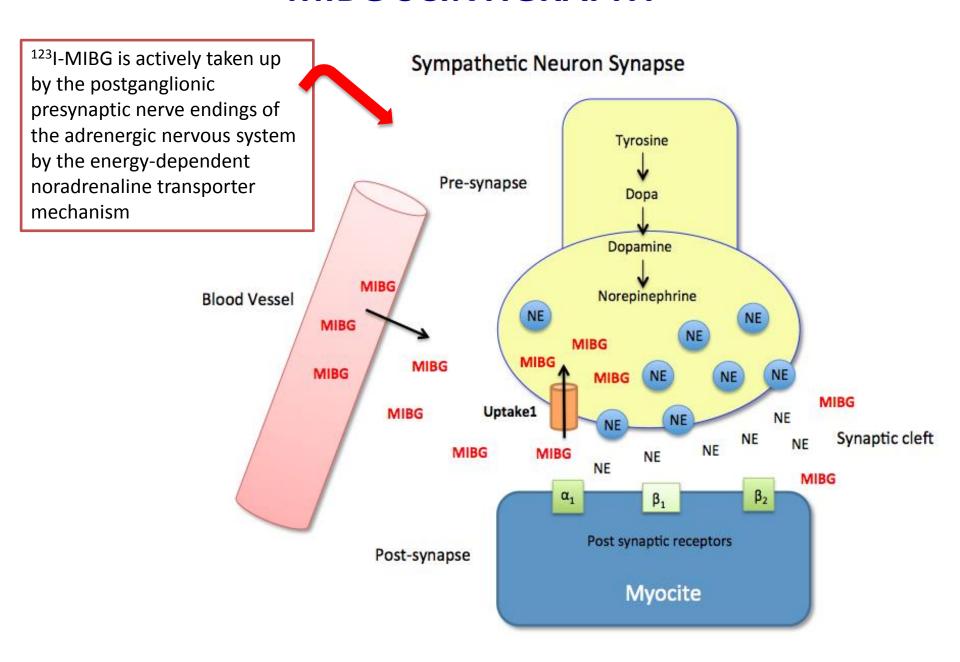
Fabiana Novellino

CONSIGLIO NAZIONALE DELLE RICERCHE Unità di Ricerca Neuroimmagini Istituto Bioimmagini e Fisiologia Molecolare

OUTLINE OF THE PRESENTATION:

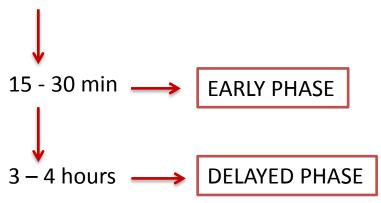
✓ MIBG-Scintigraphy;

✓ MIBG-Scintigraphy in Parkinson Disease and Atypical Parkinsonism;

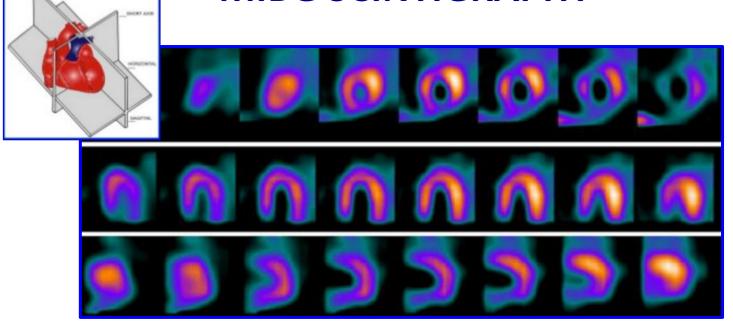

✓ MIBG-Scintigraphy in Preclinical and Premotor Phases of Movement Disorders;

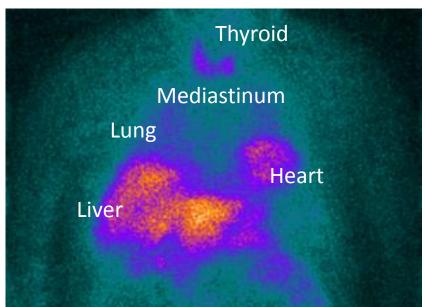
¹²³I-Meta-iodo-benzylguanidine (MIBG)

Analog of Guanethidine

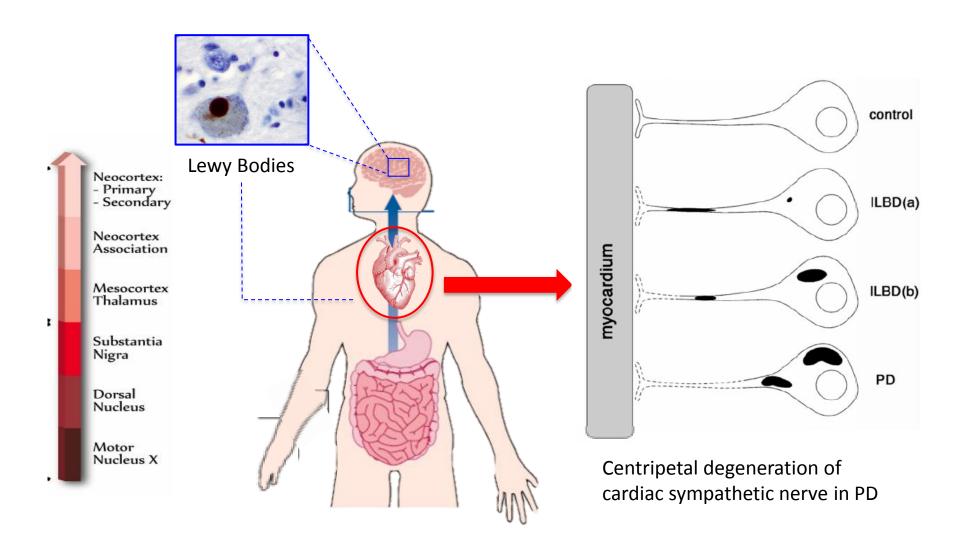

Adrenergic blocking agent

Mechanism of uptake and storage is similar to that of Noradrenaline



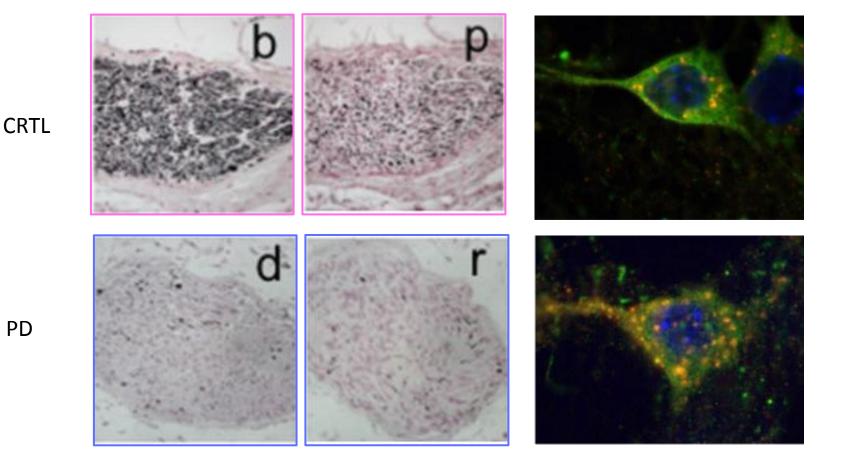


Planar and Single Photon Emission Computed Tomography (SPECT) images of the chest



Semi-quantitative assessment
Heart to Mediastinum Ratio
(H/M ratio)
in early and late phases

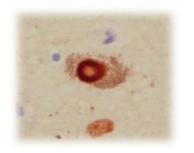
NEUROPHATHOLOGICAL HYPOTESIS


PD

Contents lists available at ScienceDirect

¹²³I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α -synucleinopathies

journal homepage: www.elsevier.com/locate/arr


Parkinson's Disease and Parkinsonism: Neuropathology

Cold Spring Harbor Perspectives in Medicine 2012;2:a009258

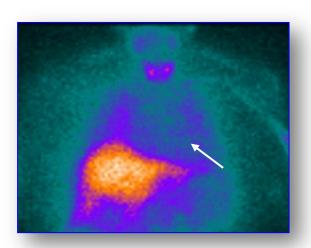
www.perspectivesinmedicine.org

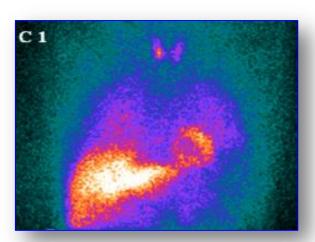
Alfa-synucleinopathies Lewy Bodies

Parkinson Disease Lewy Bodies Dementia Pure Autonomic Failure

Alfa-synucleinopathies No Lewy Bodies

Multiple System Atrophy

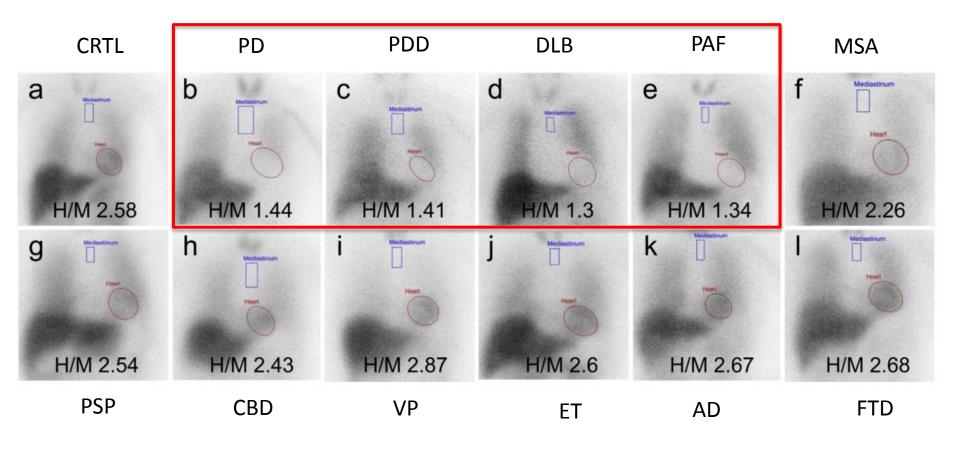

Taupathies


Progressive Supranuclear Palsy Frontotemporal Dementia Corticobasal Degeneration Amyloido- and Taupathies

Alzheimer Disease

Other forms

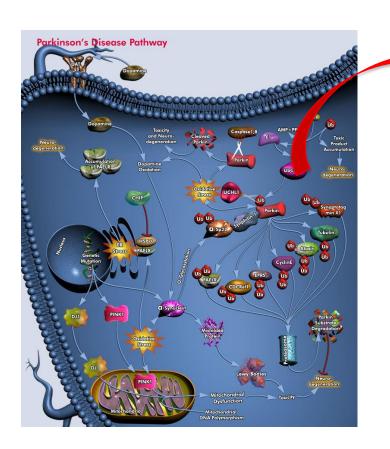
Genetic Parkinsonism Vascular Parkinsonism Iatrogenic Parkinsonism Essential Tremor

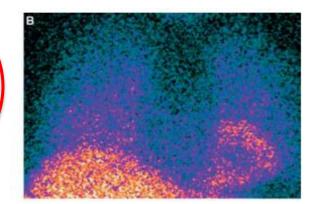


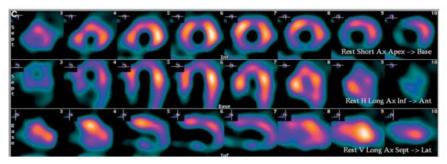
Contents lists available at ScienceDirect

 123 I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in $\alpha\text{-synucleinopathies}$

journal homepage: www.elsevier.com/locate/arr

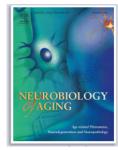



Myocardial ¹²³Metaiodobenzylguanidine Uptake in Genetic Parkinson's Disease

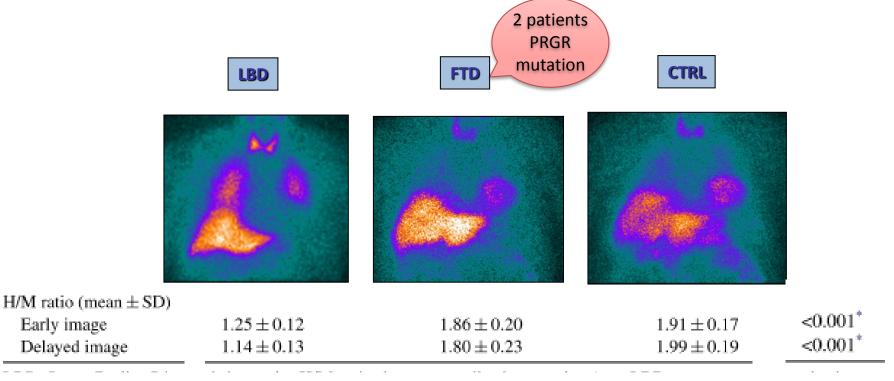

14 patients with Genetic Parkinsonism

60%

4 Parkin 2 DJ1 2 Pink1 6 LRRK2



Early image


Delayed image

Myocardial ¹²³I-MIBG scintigraphy for differentiation of Lewy bodies disease from FTD

Fabiana Novellino ^a, Antonio Bagnato ^b, Maria Salsone ^a, Giuseppe Lucio Cascini ^c, Giuseppe Nicoletti ^{a,d}, Gennarina Arabia ^{a,d}, Pierfrancesco Pugliese ^d, Maurizio Morelli ^a, Sandra Paglionico^a, Stefania Cipullo^c, Ida Manna^d, Elvira Valeria De Marco^d, Francesca Condino ^d, Carmelina Chiriaco ^a, Letterio Morgante ^e, Mario Zappia f, Aldo Quattrone a,d,*

2010;11:1903-11

Reduction of MIBG uptake in early and delayed phases

Normal MIBG uptake in early and delayed phases

Normal MIBG uptake in early and delayed phases


Movement Disorders

© 2009 Movement Disorder Society

Combined Use of DAT-SPECT and Cardiac MIBG Scintigraphy in Mixed Tremors

Fabiana Novellino, MD, Gennarina Arabia, MD, MSc, Antonio Bagnato, MD, ² Giuseppe Lucio Cascini, MD,³ Maria Salsone, MD,¹ Giuseppe Nicoletti, MD,⁴ Demetrio Messina, MD,⁴ Maurizio Morelli, MD,¹ Sandra Paglionico, MD,¹ Laura Giofrè, MD,¹ Antonino Restuccia, MD,³ Giusi Torchia, PhD,¹ Francesca Condino, PhD,⁴ and Aldo Quattrone, MD^{1,4*} Vol. 24, No. 15, 2009, pp. 2242-2248

FONDAZIONE neureca

Movement Disorders Vol. 24, No. 11, 2009, pp. 1650–1655 © 2009 Movement Disorder Society

MIBG Scintigraphy for Differentiating Parkinson's Disease Autonomic Dysfunction from Parkinsonism-Predomina Multiple System Atrophy

Eun Joo Chung, MD, PhD, Won Yong Lee, MD, PhD, Won Tae Yoon, MD, Byeong Joon Kim, MD, PhD, and Gyeong Han Lee, MD, PhD

RESEARCH ARTICLE

Usefulness of Cardiac MIBG Scintigraphy, Olfactory Testing and Substantia Nigra Hyperechogenicity as Additional Diagnostic Markers for Distinguishing between Parkinson's Disease and Atypical Parkinsonian Syndromes

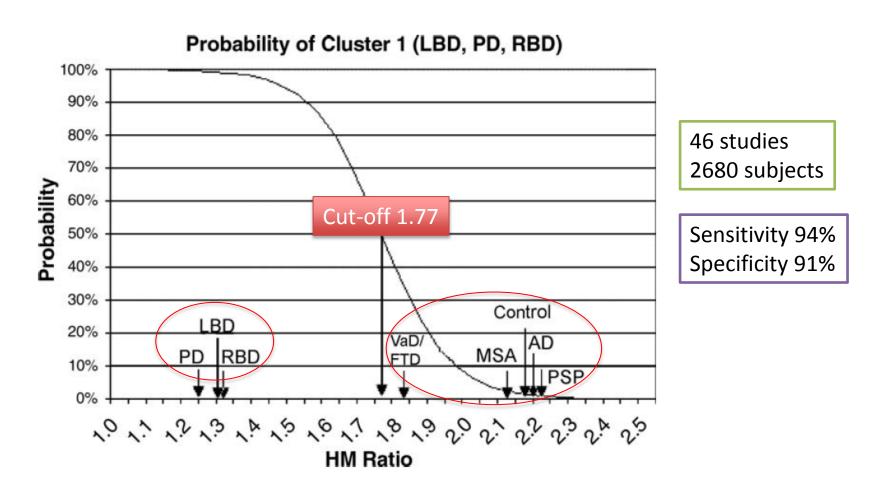
Hiroaki Fujita¹, Keisuke Suzuki¹*, Ayaka Numao¹, Yuji Watanabe¹, Tomoyuki Uchiyama^{1,2}, Tomoyuki Miyamoto³, Masayuki Miyamoto⁴, Koichi Hirata¹

Cardiac sympathetic denervation is con Tomoyu
Parkinsonian midline motor symptoms

Joong-Seok Kim ^{a,*}, Kwang-Soo Lee ^a, In-Uk Song ^a, Yeong-In Kim ^a, Sung-Hoon Kim ^b, I-Ryung You ^b, Hee-Tae Kim ^c

Different patterns of cardiac sympathetic denervation in tremor-type compared to akinetic-rigid-type Parkinson's disease: Molecular imaging with ¹²³I-MIBG

A. CHIARAVALLOTI 1 , A. STEFANI 2,3 , M. TAVOLOZZA 1 , M. PIERANTOZZI 2,3 , D. DI BIAGIO 1 , E. OLIVOLA 2,3 , B. DI PIETRO 1 , M. STAMPANONI 2,3 , R. DANIELI 1 , G. SIMONETTI 1 , P. STANZIONE 2,3 and O. SCHILLACI 1,4

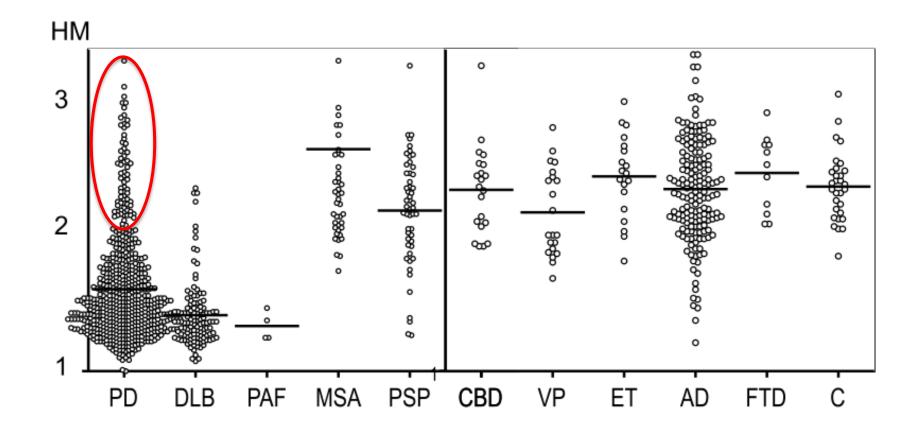

MIBG myocardial scintigraphy in pre-motor Parkinson's disease: A review

Ryuji Sakakibara ^{a,*}, Fuyuki Tateno ^a, Masahiko Kishi ^a, Yohei Tsuyusaki ^a, Hitoshi Terada ^b, Tsutomu Inaoka ^b

RESEARCH ARTICLE

Meta-Analysis of ¹²³I-MIBG Cardiac Scintigraphy for the Diagnosis of Lewy Body–Related Disorders

Alisha E. King, MD, 1 Jim Mintz, PhD, 1 and Donald R. Royall, MD1,2,3,4,5*



Contents lists available at ScienceDirect

 $^{123}\text{I-}\textit{meta}\text{-}\text{iodobenzylguanidine}$ (MIBG) cardiac scintigraphy in $\alpha\text{-}\text{synucleinopathies}$

journal homepage: www.elsevier.com/locate/arr

Cardiac ¹²³I-MIBG scintigraphy can assess the disease severity and phenotype of PD

Neurological Sciences

Shinji Saiki^{a,*}, Genjiro Hirose^a, Koichiro Sakai^a, Satoshi Kataoka^a, Ariyuki Hori^a, Misuzu Saiki^a, Muichi Kaito^a, Kotaro Higashi^b, Suzuka Taki^b, Kazuo Kakeshita^b, Susumu Fujino^c, Miho Miaki^a

220 (2004) 105-111

Relationship and factor structure in multisystem neurodegeneration in Parkinson disease

Takaaki Hattori, M.D., Ph.D.^{1,2,3,*}, Satoshi Orimo, M.D., Ph.D.², Mark Hallett, M.D.³, Tianxia Wu, Ph.D.⁴, Akira Inaba, M.D., Ph.D.², Reo Azuma, M.D.², and Hidehiro Mizusawa, M.D.,

Ph.D.¹

Acta Neurol Scand. 2014 130(6): 347–353

Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson's disease

H Nagayama, M Hamamoto, M Ueda, J Nagashima, Y Katayama

J Neurol Neurosurg Psychiatry 2005;76:249-251. doi: 10.1136/jnnp.2004.037028

Correlation between ¹²³I-MIBG uptake and disease severity evaluated by H-Y stage and UPDRS III

Research Article

Myocardial ¹²³I-MIBG Uptake and Cardiovascular Autonomic Function in Parkinson's Disease

Akira Katagiri,¹ Masato Asahina,¹,² Nobuyuki Araki,¹ Anupama Poudel,¹ Yoshikatsu Fujinuma,¹ Yoshitaka Yamanaka,¹ and Satoshi Kuwabara¹

Table 2: Correlation	between	MIBG	scintigraphy	and	autonomic
function tests.					

	Early H/M ratio (P value)	Delayed H/M ratio (P value)	Washout rate (P value)
HRV			
LF component	0.02 (0.89)	-0.02 (0.90)	0.00 (0.99)
HF component	0.18 (0.21)	0.13 (0.35)	-0.20 (0.17)
LF/HF ratio	-0.16 (0.28)	-0.16 (0.27)	0.26 (0.07)
$\mathrm{CV}_{\mathrm{R-R}}$	0.21 (0.15)	0.19 (0.19)	-0.27 (0.06)
HUT test			
SBP change	0.17 (0.23)	0.24 (0.09)	-0.34 (0.02)
DBP change	0.07 (0.63)	0.14 (0.32)	-0.29 (0.04)
HR change	0.20 (0.16)	0.15 (0.30)	0.12 (0.43)

Cardiac sympathetic denervation in bradykinesia-dominant Parkinson's disease

Masahiko Suzuki^a, Mitsuyoshi Urashima^b, Hisayoshi Oka^a, Masaya Hashimoto^a and Kenichiro Taira^a

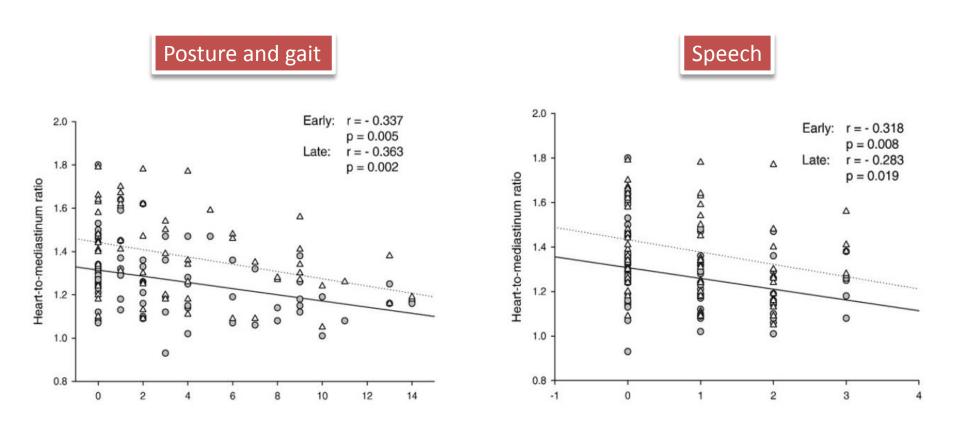
Table 2 Single and multiple linear regression models of early and delayed H/M ratios

	Single linear reg	Single linear regression model		Multiple linear regression model		
		H/M ratio				
	Early	Delayed	Early ^a	Delayed ^b		
Age at onset	- I.53 (0.127)	- I.80 (0.074)	-2.63 (0.009)	-2.84 (0.005)		
Disease duration	-2.43(0.016)	-3.48 (0.00I)	-2.47 (0.0I5)	-2.75(0.001)		
Male	- I.26 (0.2II)	0.31 (0.754)	— I.36 (0.175)	0.38 (0.704)		
HYstage	— I.79 (0.075)	-3.64 (0.00I)	0.19 (0.851)	-0.93 (0.356)		
Tremor	3.27 (0.001)	3.78 (< 0.00l)	0.05 (0.959)	-0.13 (0.89 6)		
<u>Brady</u> kinesia	$-8.24 \ (< 0.001)$	-9.67 (< 0.001)	-6.62~(<0.001)	-7.78 (< 0.001)		
Rigidity	-0.33 (0.738)	-0.19 (0.846)	-0.68 (0.499)	-0.44 (0.659)		
Postural instability	-I.08 (0.283)	-2.43 (0.0I7) [']	0.76 (0.446)	1.15 (0.254)		

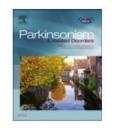
H/M, heart to mediastinum; HY, Hoehn and Yahr.

Data are t (P value) of the correlation.

The results suggest a close link between myocardial sympathetic MIBG uptake and bradykinesia, age at onset and disease duration


 $^{^{}a}R^{2}=0.3759$

 $^{^{}b}R^{2}=0.4649$


Cardiac sympathetic denervation is correlated with Parkinsonian midline motor symptoms

Joong-Seok Kim ^{a,*}, Kwang-Soo Lee ^a, In-Uk Song ^a, Yeong-In Kim ^a, Sung-Hoon Kim ^b, I-Ryung You ^b, Hee-Tae Kim ^c

Myocardial MIBG scintigraphy may predict the course of motor symptoms in Parkinson's disease*

Julia Dorschner^a, Georgios Farmakis^b, Stefanie Behnke^a, Dirk Hellwig^b, Susanne Schneider^a, Klaus Fassbender^a, Carl-Martin Kirsch^b, Ulrich Dillmann^a, Jörg Spiegel^{a,*}

: 17 (2011) 372-375

40 PD patients

Baseline MIBG scintigraphy Clinical evaluation

- Rigidity
- Bradykinesia
- Resting tremor
- Postural tremor
- Axial Symptoms

Follow-up 3-8 years

Clinical evaluation

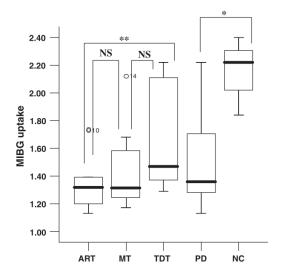
- Rigidity
- Bradykinesia
- Resting tremor
- Postural tremor
- Axial Symptoms

Correlation between MIBG uptake and rate of disease progression

motor symptom (follow-up) - motor symptom (baseline visit) time (in years) between follow- up visit and baseline visit

Table 1Correlations of motor symptoms with myocardial MIBG uptake.

Correlation	At the baseline visit	At the follow-up visit	Annual progress between baseline and follow-up visit
	p-value; correlation coeff.	p-value; correlation coeff.	p-value; correlation coeff.
Resting tremor versus MIBG	p = 0.52; $r = +0.12$	p = 0.55; $r = +0.11$	p = 0.86; r = +0.03
Postural/action tremor versus MIBG	p = 0.35; $r = +0.17$	p = 0.37; $r = +0.16$	p = 0.71; $r = +0.07$
Rigidity versus MIBG	p = 0.056; $r = -0.34$	p < 0.01; $r = -0.46$	p < 0.05; r = -0.41
Bradykinesia versus MIBG	p < 0.01; r = -0.49	p = 0.052; $r = -0.35$	p = 0.26; $r = -0.20$
Axial symptoms versus MIBG	p < 0.01; r = -0.55	p < 0.0001; r = -0.64	p < 0.01; r = -0.49


Differences in myocardial sympathetic degeneration and the clinical features of the subtypes of Parkinson's disease

Eun Joo Chung ^a, Eung Gyu Kim ^a, Moo Seong Kim ^b, Sang Kyun Bae ^c, Dae Hyun Seog ^d, S. June Oh ^e, Minkyung Oh ^f, Sang Jin Kim ^{a,*}

Table 1Clinical characteristics (mean ± standard deviation) of patients with subtypes of Parkinson's disease

Characteristics	ART	MT	TDT	HC	p-value
					<u> </u>
Sex (M/F)	3/7	5/3	5/4	5/7	0.74
Age (years)	62.9 ± 7.52	62.8 ± 5.52	57.22 ± 7.17	61.3 ± 3.37	0.76
Onset age (years)	60.3 ± 7.20	61.63 ± 5.95	33 ± 7.35		0.194
Disease duration (months)	28.3 ± 35.19	13.75 ± 12.22	20.89 ± 10.22		0.347
MIBG uptake	1.35 ± 0.22	1.35 ± 0.32	1.69 ± 0.39	2.17 ± 0.18	0.049 [§] , 0.02 [†] ←
UPDRS motor	34.6 ± 18.28	24.63 ± 7.78	16.22 ± 4.15		0.002 ¹ , 0.022 [†] , 0.019 [‡]
H-Y stage	2.8 ± 0.48	2.38 ± 0.69	2.0 ± 0.43		0.0061, 0.001
Hypokinesia	8.3 ± 4.72	8.13 ± 3.18	4.5 ± 1.85		0.07, 0.037 [†] , 0.017 [‡]
Rigidity	14.2 ± 7.19	5.0 ± 2.67	2.78 ± 0.44		0.004 ¹ ,††, 0.0001†,0.026‡
Tremor	1.6 ± 2.84	5.38 ± 1.92	6.22 ± 0.83		0.0001

Table 2Correlation between MIBG uptake and clinical characteristics in the three subgroups of patients with Parkinson's disease

Comparison	ART	MT	TDT
MIBG uptake vs. age at onset MIBG uptake vs. disease duration	r = 0.11, p = 0.76 r = -0.06, p = 0.86	r = 0.001, p = 0.98 r = -0.28, p = 0.51	r = -0.5, $p = 0.18r = 0.21$, $p = 0.59$
MIBG uptake vs. UPDRS motor	r = -0.23, $p = 0.53$	r = -0.57, $p = 0.14$	r = -0.48, $p = 0.19$
MIBG uptake vs. hypokinesia MIBG uptake vs. rigidity	r = -0.75, p = 0.01 r = -0.16, p = 0.67	r = -0.8, $p = 0.02r = -0.14$, $p = 0.75$	r = -0.33, $p = 0.39r = -0.07$, $p = 0.85$
MIBG uptake vs. tremor	r = -0.3, $p = 0.37$	r = -0.56, $p = 0.15$	r = -0.2, $p = 0.6$

Cardiac ¹²³I-MIBG scintigraphy can assess the disease severity and phenotype of PD

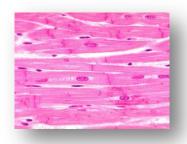
Neurological Sciences

220 (2004) 105-111

Shinji Saiki^{a,*}, Genjiro Hirose^a, Koichiro Sakai^a, Satoshi Kataoka^a, Ariyuki Hori^a, Misuzu Saiki^a, Muichi Kaito^a, Kotaro Higashi^b, Suzuka Taki^b, Kazuo Kakeshita^b, Susumu Fujino^c, Miho Miaki^a

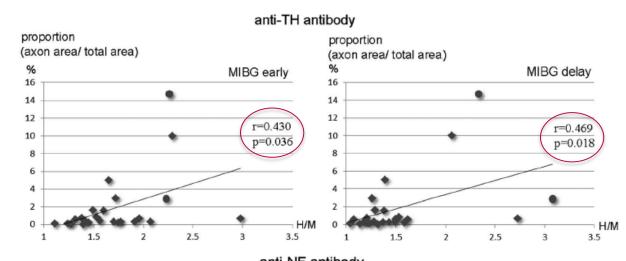
Table 4 Characteristics of the Parkinson's disease phenotypes

	PIGD- dominant (N=12)	Tremordominant (N=15)	Significance
Age at MIBG test	69.7 (10.3)	65.3 (11.1)	NS ^a
Age at onset	63.5 (12.5)	60.1 (10.9)	NS ^a
MIBG Early H/M ratio	1.30 (0.0978)	1.58 (0.210)	<i>p</i> < 0.01*
Delayed H/M ratio	1.20 (0.148)	1.46 (0.353)	p < 0.05*
Washout rate	31.0 (11.1)	29.8 (9.76)	NS*
UPDRS	53.1 (22.3)	34.4 (16.0)	p < 0.05*


PIGD=postural instability gait difficulty; MIBG=123I-metaiodobenzylguanidine; H/M=heart to mediastinum; UPDRS=Unified Parkinson's Disease Rating Scale.

Quantitative correlation between cardiac MIBG uptake and remaining axons in the MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body cardiac sympathetic nerve in Lewy body disease

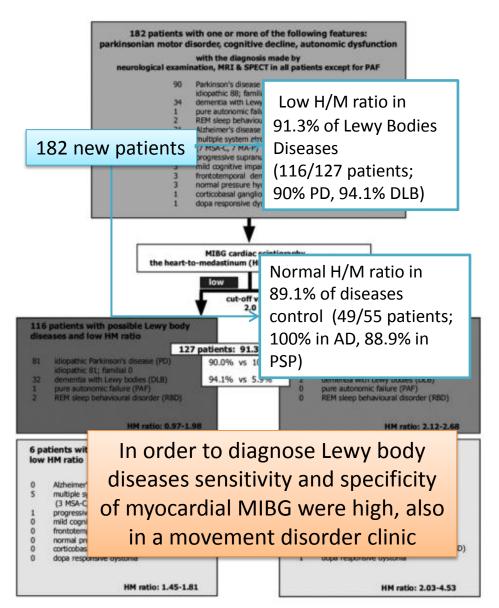
Makoto Takahashi, Masako Ikemura, Teruaki Oka, Toshiki Uchihara Koichi Wakabayashi, Akiyoshi Kakita, Hitoshi Takahashi, Mari Yoshida, Shuta Toru, Takayoshi Kobayashi and Satoshi Orimo


Cardiac tissue samples

8 PD patients15 LBD patients2 non Lewy bodies disease -> CTRL

Autopsy-confirmed diagnosis

¹²³I-MIBG cardiac scintigraphy in life



Sensitivity and specificity of metaiodobenzylguanidine (MIBG) myocardial accumulation in the diagnosis of Lewy body diseases in a movement disorder clinic*

Fuyuki Tateno 17 (2011) 395-397

Take Home Messages

The ¹²³I-MIBG cardiac scintigraphy is a useful marker of function of sympathetic endings in the heart. Reduced MIBG uptake indicates post-ganglionic sympathetic dysfunction, which reflect the Lewy Bodies accumulation in paravertebral sympathetic ganglia.

MIBG scintigraphy is a sensitive tool that allows to distinguish Lewy Bodies pathologies (PD, PDD, DLB, PAF) from other no-Lewy parkinsonism (MSA, PSP; CBD, VP, FTD, AD, ET)

MIBG scintigraphy is differently affected in different PD phenotypes (ART > TD; late > early stages)

Although careful interpretation of the result of MIBG cardiac scintigraphy is required (possibility of false positive and false negative; medications, peripheral autonomic neuropathies, and congestive heart failure can affect cardiac MIBG uptake) and despite it remains a not-routinely executable examination, it represent a useful technique in specialized movement disorders clinic to refine the diagnosis of parkinsonian disorders

