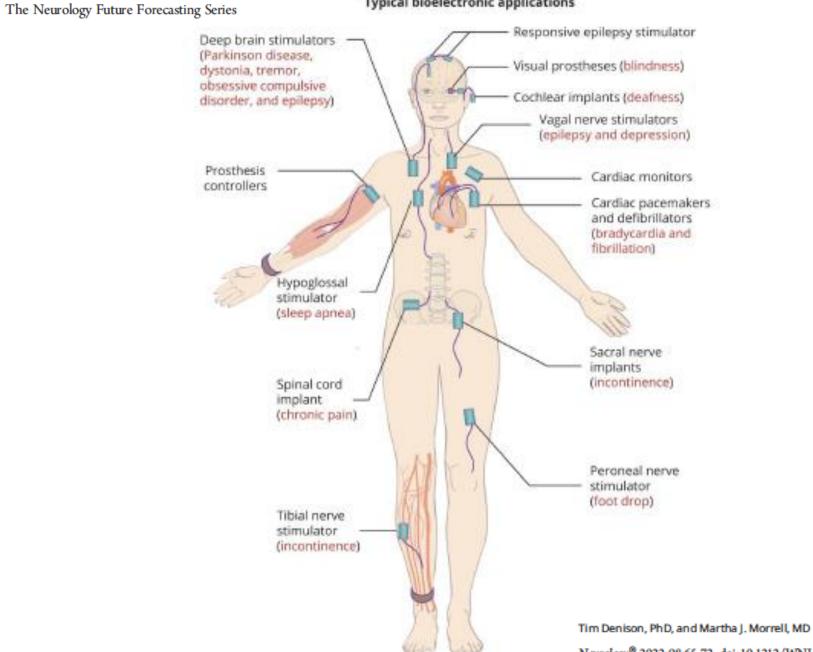
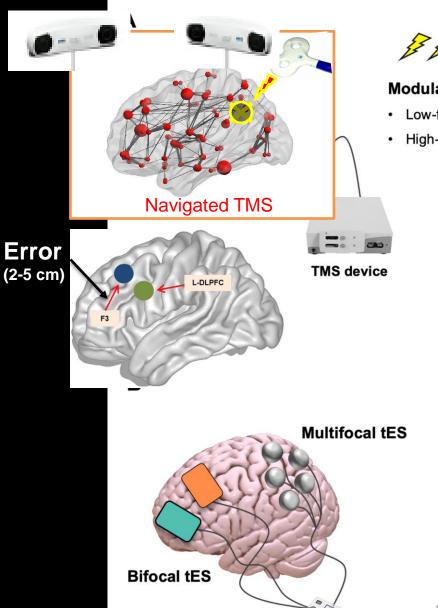
Non-invasive Brain Stimulation

Simone Rossi Simone.rossi@unisi.it



Brain Investigation & Neuromodulation Lab Univesity of Siena –Italy-

www.sibinlab.it



Neuromodulation in 2035

Typical bioelectronic applications

Neurology® 2022;98:65-72. doi:10.1212/WNL.000000000013061

Repetitive TMS (rTMS)

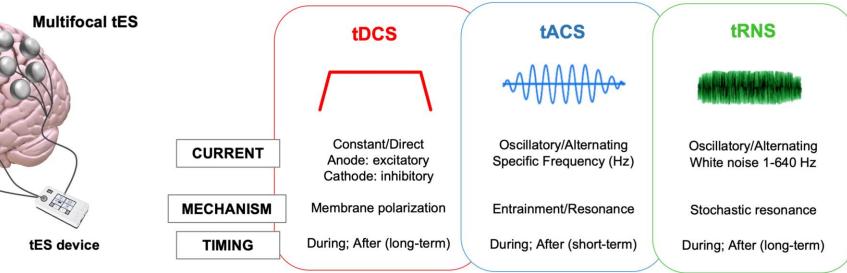
Modulate Cortical Excitability and Induce Plasticity:

- Low-frequency rTMS (1-5Hz): Inhibitory →LTD-like effects
- High-frequency rTMS (10-20Hz): Excitatory → LTP-like effects

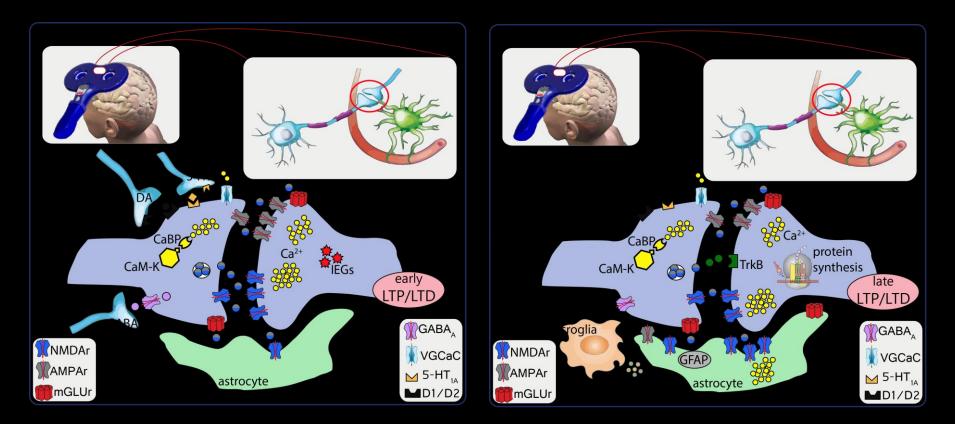
LTD / LTP-like effects of NiBS are mediated by:

- NMDA and AMPA receptors
- GABA system
- gene induction (i.e., BDNF)
- neuromodulators changes (i.e., dopamine)

Paired Pulse TMS (ppTMS)


Assess Excitation/Inhibition Balance:

- Short Intracortical Inhibition (SICI)
- Long Intracortical Inhibition (LICI)
- Intracortical Facilitation (ICF)


Single Pulse TMS (spTMS)

Assess Cortical Excitability:

- Motor-Evoked Potentials (MEPs)
- Combined with EEG: TMS-evoked Potentials (TEPs)

Depending on the combination of frequecy/intensity, the rTMS prodces long-lasting modification of synaptic efficacy in the stimulated networks......(LTP-LTD)

.....thereby restoring a more physiological operating mode (.....as a drug)

Review

One century of healing currents into the brain from the scalp: From electroconvulsive therapy to repetitive transcranial magnetic stimulation for neuropsychiatric disorders

Riccardo Di Iorio^{a,*}, Simone Rossi^b, Paolo M. Rossini^c

Clinical Neurophysiology 133 (2022) 145-151

La Neuromodulazione non è una terapia elettroconvulsivante (o Elettroshock)

- No anestesia
- No crisi comiziali
- No effetti avversi (memoria)

	Electroconvulsive Therapy (ECT)	Transcranial magnetic stimulation (TMS)
Mechanism	Electrically induced seizures	Non-convulsive electromagnetic stimulation
Stimulation target	Spread	Personalized (focal target/ individual threshold/ neuronavigation)
Setting	Requires hospitalization	Performed in an outpatient setting
Medical procedure	Requires general anaesthesia	No anaesthesia or sedation
Recovery time after each treatment	Hours	Minutes
Major after- effects	Short- and long-term memory loss	None (seizure very rare)
Minor side- effects	Headaches, muscle and jaw aches, feeling confused, ill and nauseous	Little, transient, discomfort on the stimulation site, headaches, fatigue
Treatment plan	2–3 times a week (max. 15 sessions)	Daily (Monday-Friday) for 4– 6 weeks

Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018)

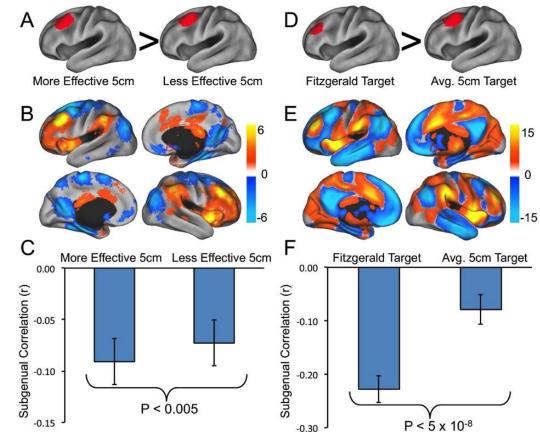
Jean-Pascal Lefaucheur^{a,b,*}, André Aleman^c, Chris Baeken^{d,e,f}, David H. Benninger^g, Jérôme Brunelin^h, Vincenzo Di Lazzaroⁱ, Saša R. Filipović^j, Christian Grefkes^{k,l}, Alkomiet Hasan^m, Friedhelm C. Hummel^{n,o,p}, Satu K. Jääskeläinen^q, Berthold Langguth^r, Letizia Leocani^s, Alain Londero^t, Raffaele Nardone^{u,v,w}, Jean-Paul Nguyen^{x,y}, Thomas Nyffeler^{z,aa,ab}, Albino J. Oliveira-Maia^{ac,ad,ae}, Antonio Oliviero^{af}, Frank Padberg^m, Ulrich Palm^{m,ag}, Walter Paulus^{ah}, Emmanuel Poulet^{h,ai}, Angelo Quartarone^{aj}, Fady Rachid^{ak}, Irena Rektorová^{al,am}, Simone Rossi^{an}, Hanna Sahlsten^{ao}, Martin Schecklmann^r, David Szekelv^{ap}, Ulf Ziemann^{aq}

Level A (definite efficacy):

- Depression (DLPFC)
- Chronic neurophatic pain (M1)
- Post-stroke motor hand recovery (M1, acute phase)
- Obsessive-compulsive disorder (FDA-approved; target: SMA)

Level B (probable efficacy):

- Lower limbs spasticity in Multiple Sclerosis (M1)
- Depression (DLPFC) and motor symptoms (bilateral M1) in Park
- Quality of life (M1) and pain alleviation (DLPFC) in fibromyalgia
- Post-traumatic stress disorders
- Post-stroke aphasia


Clinical Neurophysiology 131 (2020) 474-528

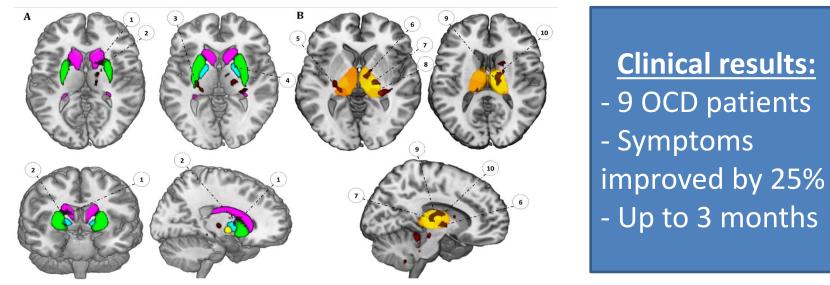
Connectivity predicts better efficacy

Efficacy of TMS targets for depression is related to intrinsic functional connectivity with the subgenual cingulate

Michael D. Fox^{1,2,3}, Randy L. Buckner^{3,4,5}, Matthew P. White⁶, Michael D. Greicius⁷, and Alvaro Pascual-Leone^{2,8}

 Sites predicted to have better treatment efficacy are "anticorrelated" with subgenual cingulate

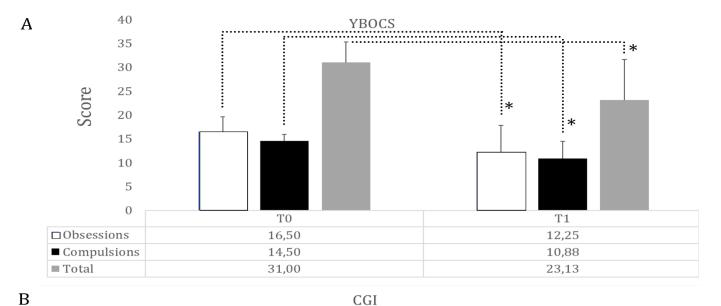
The case of OCD

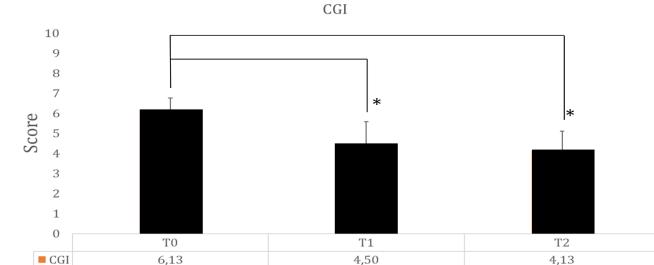

Functional connectivity changes and symptoms improvement after personalized, double-daily dosing, repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: A pilot study

Antonio Mantovani^{a,1}, Francesco Neri^{b,1,*}, Giordano D'Urso^c, Lucia Mencarelli^{b,d}, Elisa Tatti^a, Davide Momi^{b,d}, Arianna Menardi^{b,d}, Giulia Sprugnoli^b, Emiliano Santarnecchi^{b,d}, Simone Rossi^{b,e}

Journal of Psychiatric Research 136 (2021) 560-570

High-density, personalized 1 Hz rTMS (7200 stim/day in two sessions) of the SMA in OCD patients


Seed region: bilateral SMA



reduction of pathological hyperconnectivity between SMA and certaiin basal ganglia and thalamic regions

Rs Connectvity changes are related to clinical improvement

rTMS: therapeutic application for OCD

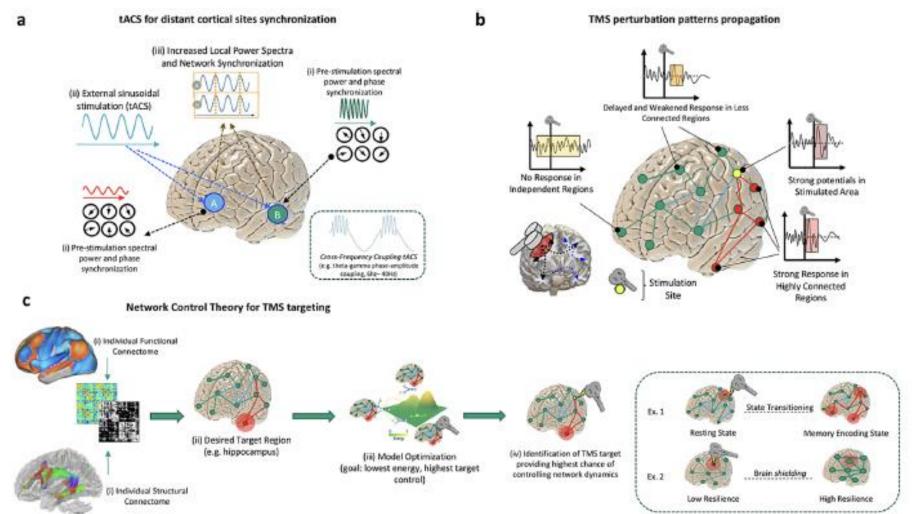


Mantovani et al., 2021

The case of OCD

Higher YBOCS Total Score correlation with higher connectivity between SMA and subcortical regions

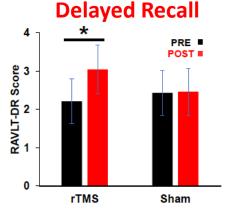
Connectivity might predict rTMS outcome


Journal of Psychiatric Research 136 (2021) 560-570

Toward noninvasive brain stimulation 2.0 in Alzheimer's disease

Arianna Menardi ^{a,b}, Simone Rossi ^c, Giacomo Koch ^d, Harald Hampel ^e, Andrea Vergallo ^e, Michael A. Nitsche ^{f,g}, Yaakov Stern ^h, Barbara Borroni ⁱ, Stefano F. Cappa ^{j,k}, Maria Cotelli ¹, Giulio Ruffini ^m, Georges El-Fakhri ⁿ, Paolo M. Rossini ^o, Brad Dickerson ^p, Andrea Antal ^q, Claudio Babiloni ^{r,s}, Jean-Pascal Lefaucheur ^{t,u}, Bruno Dubois ^{v,w,x}, Gustavo Deco ^{y,z}, Ulf Ziemann ^{aa, ab}, Alvaro Pascual-Leone ^{ac, ad, ae}, Emiliano Santarnecchi ^{a,*,1}

Ageing Research Reviews 75 (2022) 101555

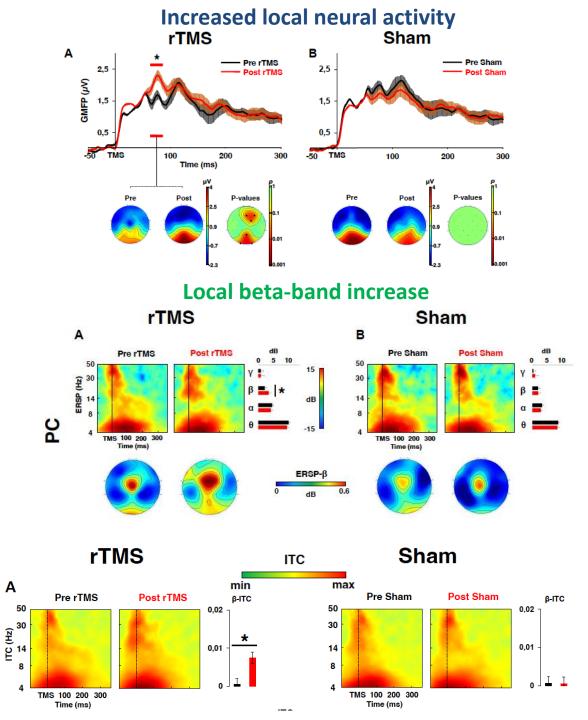


> Neuroimage. 2018 Apr 1;169:302-311. doi: 10.1016/j.neuroimage.2017.12.048. Epub 2017 Dec 19.

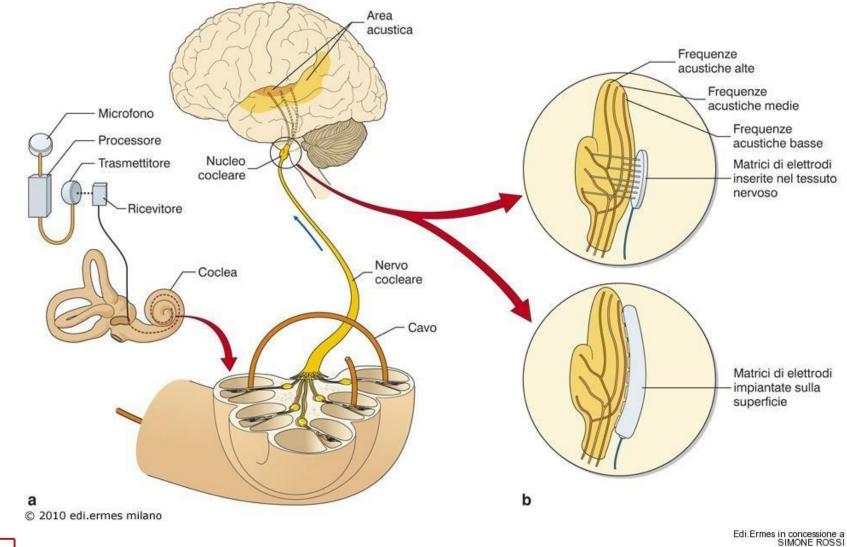
Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease

Giacomo Koch ¹, Sonia Bonnì ², Maria Concetta Pellicciari ², Elias P Casula ², Matteo Mancini ³, Romina Esposito ², Viviana Ponzo ², Silvia Picazio ², Francesco Di Lorenzo ⁴, Laura Serra ³, Caterina Motta ², Michele Maiella ², Camillo Marra ⁵, Mara Cercignani ⁶, Alessandro Martorana ⁴, Carlo Caltagirone ⁴, Marco Bozzali ⁷

20 Hz, 1600 stim/day, two weeks RSCT


PC D

Improved episodic memory (no other cognitive domains)

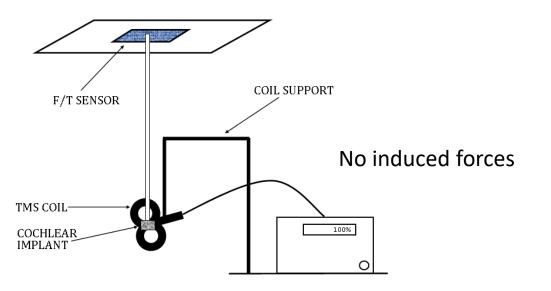

TMS-EEG: increase of Parietal neural activity

EEG: increase of beta-band

Increase of functional connections within the DMN (network effect?)

rTMS in patients with Cochlear Implants

Francesco Neri – PhD student



Clinical Neurophysiology Volume 132, Issue 3, March 2021, Pages 723-729

Feasibility of TMS in patients with new generation cochlear implants

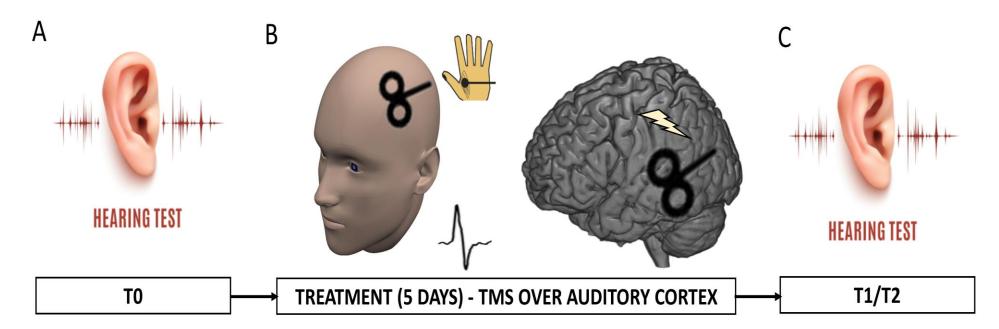
Marco Mandalà ª, Tommaso Lisini Baldi ^b, Francesco Neri ^c, Lucia Mencarelli ^c, Sara Romanella ^c, Monica Ulivelli ^c, Domenico Prattichizzo ^b, Emiliano Santarnecchi ^{c, d}, Simone Rossi ^c ^A ⊕ ⊠

5 titanium housed cochlear implant devices (2 x Mi1000 and 3 x Mi1200 were tested

Stimulation parameters:

- 1 Hz rTMS for 30 minutes (total: 1800 pulses)
- 10 Hz rTMS for 4 seconds trains, with inter-train intervals of 8 seconds (total: 1800 pulses)
- Max stim output

<u>Extreme tests</u>: both combinations of frequency/intensity and length of stimulation exceeded the upper limits of published safety tables thus they have to be considered reasonably unsafe for humans


<u>All the implants resulted completely functioning</u> and with no damages/defections, irrespective to the applied protocols of stimulation.

Francesco Neri – PhD student

rTMS for the treatment of age-related hearing loss in patients with wearable hearing aids Francesco Neri^{1*}, Chiara Cappello^{2*}, Francesca Viberti², Lucia Burzi¹, Alessandra Cinti¹, Alberto Benelli¹, Carmelo Luca Smeralda¹, Sara Romanella¹, Emiliano Santarnecchi³, Marco Mandalà^{2**}, Simone Rossi^{1**}

PROTOCOL

Results are under submission

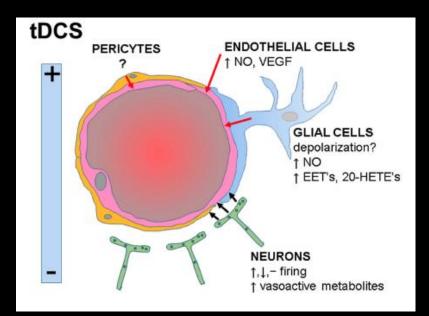
Francesco Neri – PhD student

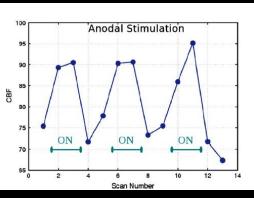
tDCS and perfusion

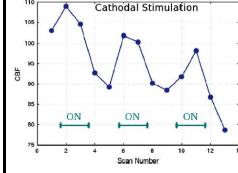
Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat

Dorothee Wachter ^{a,*}, Arne Wrede ^c, Walter Schulz-Schaeffer ^c, Ali Taghizadeh-Waghefi ^a, Michael A. Nitsche ^b, Anna Kutschenko ^b, Veit Rohde ^a, David Liebetanz ^b

Contents lists available at ScienceDirect

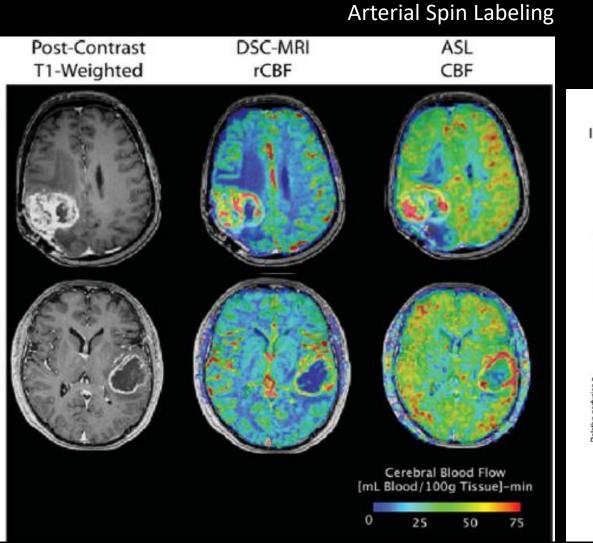

NeuroImage


journal homepage: www.elsevier.com/locate/ynimg

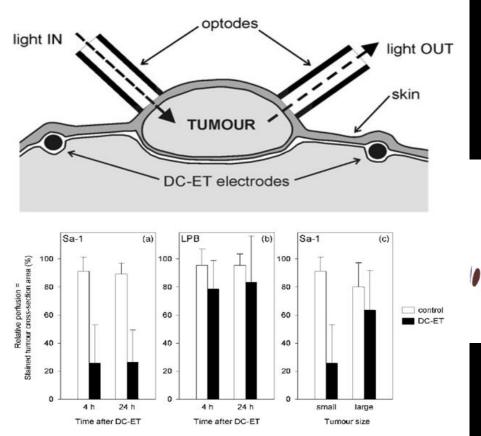

Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow

Xin Zheng ^a, David C. Alsop ^b, Gottfried Schlaug ^{a,*}

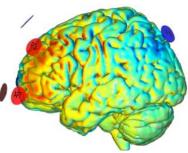
^a Dept. of Neurology, Neuroimaging and Stroke Recovery Laboratories, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA ^b Dept. of Radiology, Division of MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA



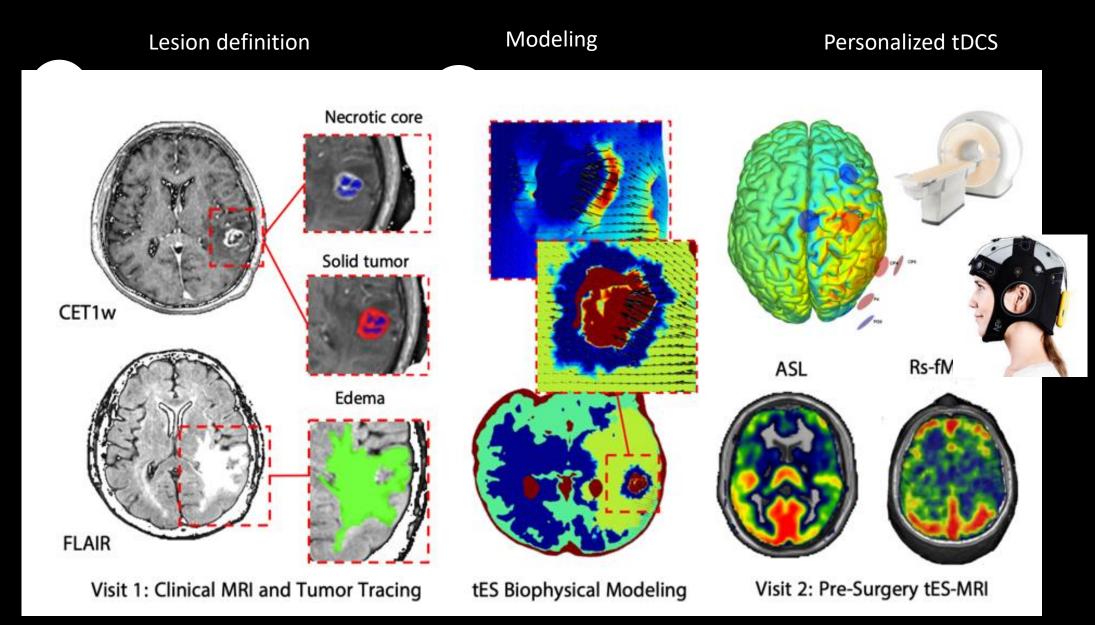
HGG and Perfusion

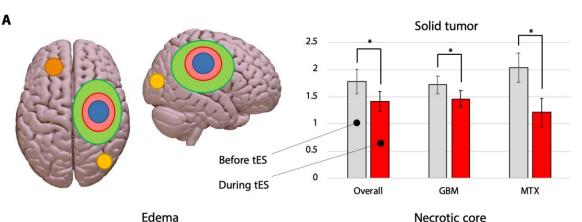

А

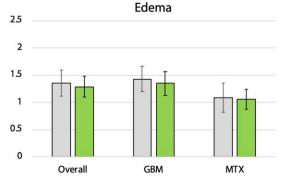
в

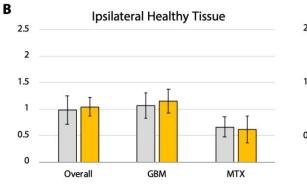


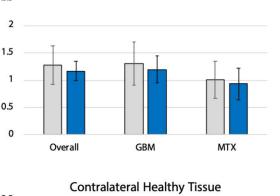
Perturbation of blood flow as a mechanism of anti-tumour action of direct current electrotherapy

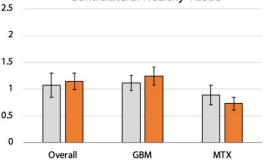

Tomaž Jarm¹, Maja Čemažar², Fritz Steinberg^{3,4}, Christian Streffer^{3,5}, Gregor Serša² and Damijan Miklavčič¹


tDCS on brain tumors?


Experimental Protocol




Results



2.5

- pilot study
- no sham
- long term effects?
- repetitive sessions?

SCIENCE ADVANCES | RESEARCH ARTICLE

HEALTH AND MEDICINE

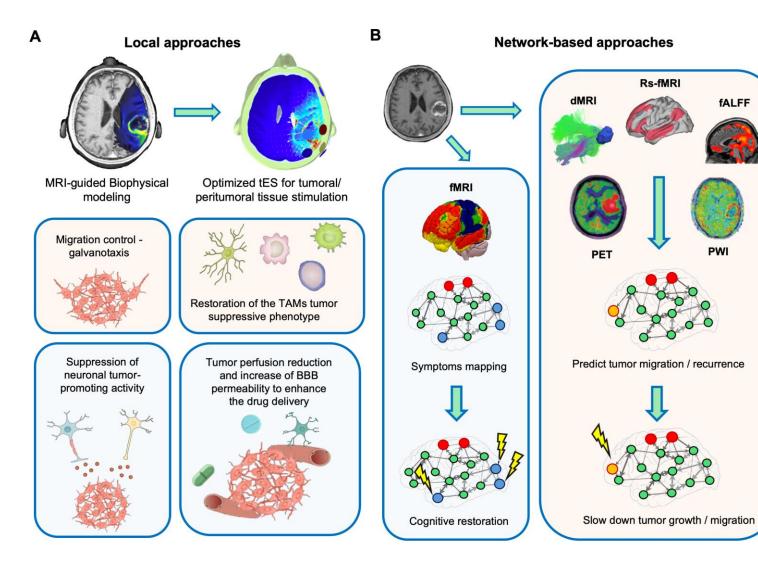
Reduction of intratumoral brain perfusion by noninvasive transcranial electrical stimulation

G. Sprugnoli¹*, L. Monti²*, L. Lippa³, F. Neri¹, L. Mencarelli¹, G. Ruffini⁴, R. Salvador⁴, G. Oliveri³, B. Batani³, D. Momi¹, A. Cerase², A. Pascual-Leone^{5,6}, A. Rossi^{1,7}, S. Rossi^{1,7}, E. Santarnecchi^{1,5,6†}

1) No Adverse Events or Side Effects, neither Pre- nor Post- surgery

2) Selective Decrease of Intratumoral perfusion during stimulation (-36%)

MAAAS


Advances

Science

Neuromodulation for HHG?

fALFF

PWI

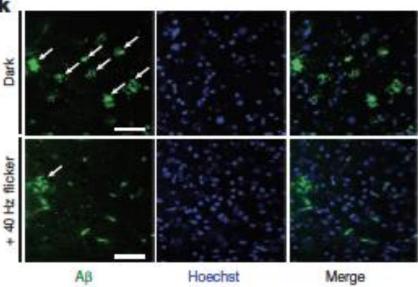
Future **Directions:**

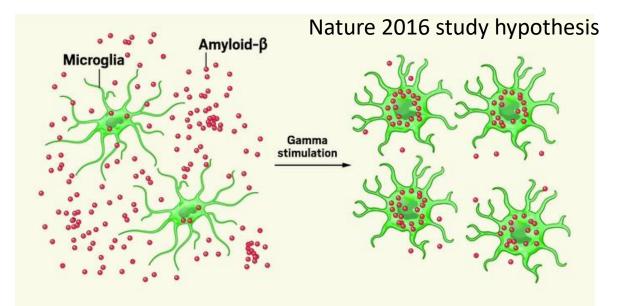
Tumor-network connectivity as a survival biomarker Personalized neuromodulatory interventions on tumor's electrical properties?

Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities

Giulia Sprugnoli^{a,b,c,d}, Simone Rossi^d, Alexander Rotenberg^e, Alvaro Pascual-Leone^{f,g}, Georges El-Fakhri^h, Alexandra J. Golby^{c,1}, Emiliano Santarnecchi^{a,1,*}

EBioMedicine 70 (2021) 103514


Gamma frequency entrainment attenuates amyloid load and modifies microglia


Hannah F. Iaccarino^{1,3}*, Annabelle C. Singer^{2,3,4}*, Anthony J. Martorell^{1,3}, Andrii Rudenko^{1,3}, Fan Gao^{1,3}, Tyler Z. Gillingham^{1,3}, Hansruedi Mathys^{1,3}, Jinsoo Seo^{1,3}, Oleg Kritskiy^{1,3}, Fatema Abdurrob^{1,3}, Chinnakkaruppan Adaikkan^{1,3}, Rebecca G. Canter^{1,3}, Richard Rueda^{1,3}, Emery N. Brown^{1,3,5,6}, Edward S. Boyden^{2,3,4} & Li-Huei Tsai^{1,3,7} 230 | NATURE | VOL 540 | 8 DECEMBER 2016

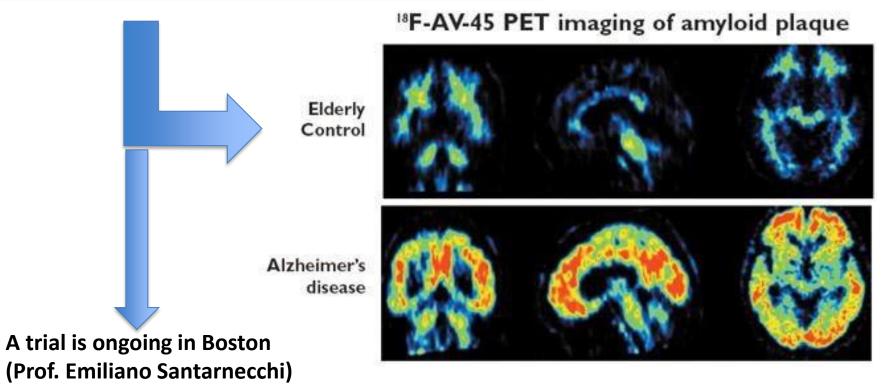

Changes in gamma oscillations (20–50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid- β (A β)₁₋₄₀ and A β ₁₋₄₂ isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with A β . Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced A β ₁₋₄₀ and A β ₁₋₄₂ levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.

Figure 4 | Driving 40 Hz oscillations in VC via light flicker redu Aβ and amyloid plaques in 5XFAD mice.

k, Immunohistochemistry with anti-A β (D5452, green) antibody in 6-month-old VC of 5XFAD mice after 7 days of 1 h per day dark or 40 Hz flicker showing plaques (white arrows; scale bar, 50 μ m).

Impact of 40 Hz Transcranial Alternating Current Stimulation on Cerebral Tau Burden in Patients with Alzheimer's Disease: A Case Series

JAlzheimers Dis. Author manuscript. 2022

Maeva Dhaynauta,1, Giulia Sprugnoli^{b,1}, Davide Cappon^b, Joanna Macone^b, Justin S. Sanchez^{a,o}, Marc D. Normandin^a, Nicolas J. Guehl^a, Giacomo Koch^d, Rachel Paciorek^b, Ann Daily increase of Connor^b, Daniel Press^b, Keith Johnson^{a,o}, Alvaro Pascual-Leone^{e,f}, Georges El Fakhria^{,1,*}, gamma power Emiliano Santarnecchia,b,1,* B Post-tACS Spectral Power Changes Post-Treatment Global Spectral Power Changes 1 hour tACS daily for 4 weeks 51 52 53 54 electrodes 0.2 3 electrodes Daily tACS Visits (days) Mid y High y D С Subject #1 [IIC]-PBR28 pre = p-Tau IIIC]-PBR28 pos Subject #2 = micorglia activation = beta-amyloid .6.19 Subject #3 ubject #4 1.57 [18F]-FTP [11C]-PiB [11C]-PBR28

2% reduction of p-Tau in ¾ patients (enthorinal cortex)

Beta amyloid unchanged

¼ decrease of microglia activation

Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer's disease

А

С

Pt #8

*p < 0.05

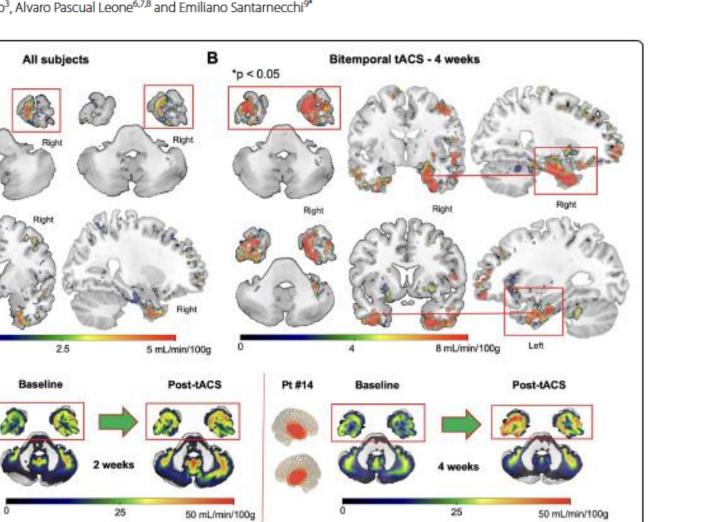
Giulia Sprugnoli^{1,2}, Fanny Munsch³, Davide Cappon¹, Rachel Paciorek¹, Joanna Macone¹, Ann Connor¹, Georges El Fakhri⁴, Ricardo Salvador⁵, Giulio Ruffini⁵, Kevin Donohoe⁴, Mouhsin M. Shafi¹, Daniel Press¹, David C. Alsop³, Alvaro Pascual Leone^{6,7,8} and Emiliano Santarnecchi^{9*}

Sprugnoli et al. Alzheimer's Research & Therapy (2021) 13:203 https://doi.org/10.1186/s13195-021-00922-4

Mid Gamma Spectral Power (T8)

T8 ∆ Spectral Power (µV2/Hz)

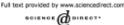
Craft Story Recall Delayed -Paraphrase


> r = 0.60 R² = 36% p = 0.01

∆ CBF (mi/min/100g) Craft Story Recall Delayed - Verbatim

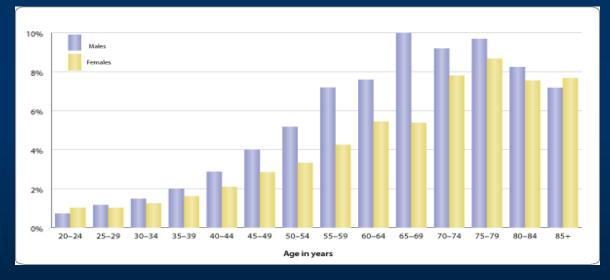
> r = 0.53 R² = 28% p = 0.04

∆ CBF (mil/min/100g)


r = 0.57 R² = 33% p = 0.05

Chup

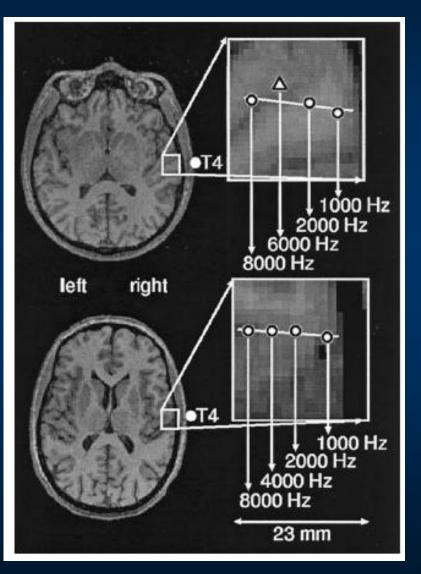
TRENDS in Neurosciences Vol.27 No.11 November 2004


The neuroscience of tinnitus

Jos J. Eggermont¹ and Larry E. Roberts²

Review

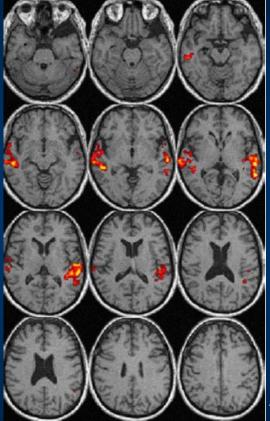
¹Department of Physiology and Biophysics, and Department of Psychology, University of Calgary, Alberta, Canada, T2N 1N4 ²Department of Psychology, McMaster University, Hamilton, Ontario, Canada, L8S 4K1


• In 5–15% of the general population, the tinnitus sensation is unremitting

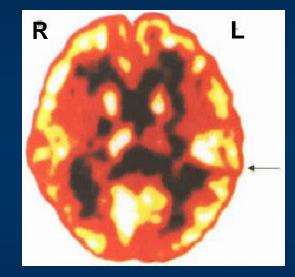
Prevalance of chronic tinnitus

• In 1–3% of the general population, tinnitus affects the quality of life of patients, since it is associated with sleep disturbances, work impairment and psychiatric distress or depression

Maladaptive plastic reorganization of auditory cortex in patients with tinnitus *W.Muhlnickel, T.Elbert, E.Taub, H.Flor, PNAS 1998*



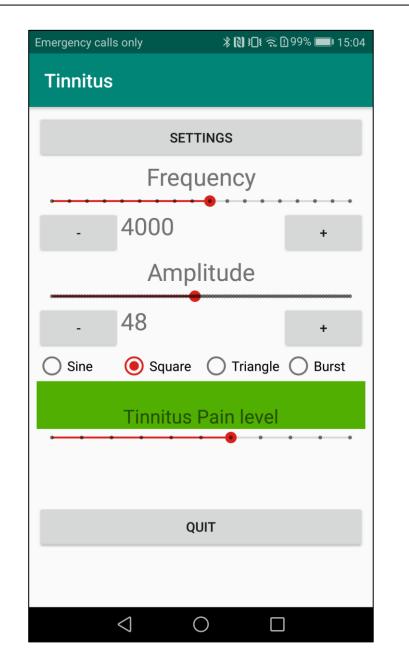
Tonotopy studies by MEG Anterior shift of the cortical epresentation of certain frequencies in patients with tinnitus


Neurons in a de-afferented cortical region shift their tuning to represent frequencies near the edge of the lesion, thus giving rise to an expanded representation of these frequencies and to the sensation of tinnitus

Brain areas involved in tinnitus perception

Increased CBF/metabolism

Generally in the left hemisphere, independently by the side where tinnitus is perceived Sometimes only contralateral to tinnitus


Transverse temporal gyrus (BA41) Superior temporal gyrus (BA42,22) Anterior temporal gyrus (BA38) Hippocampal region

TINNITUS TREATMENT BY WEARABLE MULTISENSORY STIMULATION

Auditory Vestibular Somatosensory (cutaneous and proprioceptive)

	Ministero dello Sviluppo Economico	
	Direzione generale per la tutela della proprietà industriale	
	Ufficio Italiano Brevetti e Marchi ————————————————————————————————————	
ATTESTATO DI BREVETTO PER INVENZIONE INDUSTRIALE		
	Il presente brevetto viene concesso per l'invenzione oggetto della domanda:	
	n presente orevetto viene concesso per i nivenzione oggetto dena domanda.	
	N. 102017000096334	
TITOLARE/I:	MANDALA' Marco ROSSI Simone PRATTICHIZZO Domenico	
	Celestino Marco Santo Pietro	
DOMICILIO:	ABM - Agenzia Brevetti & Marchi di Ing. Marco Celestino viale Giovanni Pisano 31 56123 Pisa	
INVENTORE/I:	MANDALA' Marco PRATTICHIZZO Domenico ROSSI Simone	
TITOLO:	Sistema di stimolazione elettromeccanico per il trattamento del disturbo da tinnitus	
CLASSIFICA:	H04R	
DATA DEPOSITO:	25/08/2017	
Roma, 09/12/2019	11 Dirigente della Divisione Loredana Guglielmetti	

DATA ARE BEING COLLECTED